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                                                       Abstract 
By re-interpreting the special relativity (SR) postulates based on Euclidean 4-space-time , a geometrical 
model is formulated called the Euclidean Space-Time (EST) diagram. The EST diagram is a velocity 
vector model with a real time parameter along the 4th dimension and consequently has a (++++) metric. 
The model is governed by a circular function geometry and the relativistic variations are expressed in 
trigonometric form as a function of a real spacetime angle θ (or alternatively an orientation angle φ) that 
uniquely corresponds to velocity υ. Its possible usage as a convenient alternative to Minkowski diagram to 
investigate the Lorentz transformation is discussed. 
 
Keywords: Special relativity, Euclidean 4-space-time, Lorentz transformation.    
   
 
1.1 INTRODUCTION. 
 
The fundamentals of physical phenomena can generally be interpreted in terms of simple 
operations of geometry and has often been applied to simplify our understanding of it. In 
Galilean relativity, based on the premise that mechanical laws remains the same to an observer, 
the principles of mechanics were formulated. With the introduction of special relativity (SR), 
mechanics and optics were incorporated into the relativity framework by postulating natural laws 
remains the same in any inertial reference frame and that light velocity remains the same (c) 
independent of the motion status of the source. The Lorentz transformation equations were 
formulated studying two (2) inertial frames O and O’ moving along the x and x’-axis using 
position coordinates in similarity to that as done under the Galilean transformation but with the 
added requirement it satisfies the SR postulates. For the special case of velocities much less than 
c, the Lorentz transformation reduces to Galilean transformation to the 1st order of 
approximation.  
 
 
The wavefront of the invariant velocity c of a propagating light pulse with reference to the 
coordinate system of frame O  is  x 2 + y 2 + z 2 − c 2 t 2 = 0 and of frame O’ is   x’ 2 + y’ 2 + z’ 2 
− c 2 t’ 2 = 0. The geometrical model formulated from SR based on this position coordinates is 
the Minkowski space-time (ST) diagram. The components of the 4-vector for displacement in 4-
dimensional (4D) space-time is  ds 2 = dx 2 + dy 2 + dz 2 – c 2 dt 2, where ds is the Lorentz 
invariant. The 4th dimensional-axis in the ST diagram is imaginary and thus has a non-Euclidean 
(+++ −) metric. A moving body is studied in terms of a complex angular rotation in space-time 
with the Lorentz transformation equations expressed as a hyperbolic function of an angular 
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velocity parameter, rapidity α. This motivates us to seek a convenient alternative Euclidean (+ + 
+ +) metric model with the relativistic equations expressed as simple trigonometric functions of 
an angular velocity parameter derivable from this geometry.  
 
 
1.2  THE CONCEPTUAL SPACETIME GEOMETRY. 
 
To formulate the conceptual geometry, we put forward the 1st postulate. 
  
Postulate 1:  Relative to an observer in any inertial frame, natural laws remains the same. 
 
This postulate 1 is the same as in SR. It implies for the case of 2 inertial frames O & O’ at rest 
relative to each, the space and time intervals in the frames for both observers O & O’ remains the 
same at its ‘proper’ values. When O’ is moving, the intervals are not ‘proper’ relative to observer 
O with the observations being co-variant. If instead of only 2 inertial frames O & O’, if each is 
made up of a group of inertial frames O1 , O2 , O3 , O4 , O5 , O6   &   O1’, O2’, O3’, O4’, O5’, O6’  
located orthogonally moving at a uniform velocity υ (Fig 1), then observations of the variations 
between any 2 frames in different groups also remains exactly the same.  
 
                                                                                                   O1’             
                                                                                                                                                         O2’ 
                                        O1              
                                                         O2                                       
                                                                υ           O6

’                                       O3’ 
                                                                                          O’ 
                 O6                                            O3        
                                 O                                                    O5

’                    
                                                                                                   O4

’ 
                          O5                 
                                         O4 
 
            Fig 1:  2 groups of inertial frames O and O’ moving uniformly at velocity υ.  
 
 
We conceptualize the ‘rest’ and ‘moving’ groups of frames are in Euclidean spaces relative to 
observers within a group and are rotated in 4-space-time with observations being co-variant.  In 
our approach a frame is investigated not only in relation to its rate of displacement in space 
(velocity in space, υs ) conventionally called its velocity υ  but also in relation to its rate of 
displacement in time ( velocity in time, υt ). This suggests that an inertial frame’s rate of 
displacement in spacetime (its ‘velocity in spacetime’), be represented by a velocity spacetime 
vector υst with its 2 components as the velocity space vector υs and velocity time vector υt . For 
convenience we fix the direction of vector υs (representing the conventional velocity) along the 
x1-axis and with that the only axes of interest are the x1 and x4 axes. This implies the other 
component of  the frame’s  υst  vector be represented by a velocity time vector υt  normal to the υs 
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vector. The ‘velocity in time’ υt of a frame is a measure of its clockrates.  Fig 2 shows this 
conceptual geometrical model. 
                                      
                              x4-axis  
 
 
                                          Velocity spacetime               
           Velocity time              vector   υst 
              vector   υt                        
       
                                                  θ 
                                                                                                  x1-axis  
                                                        υs 
                                          Velocity space vector                             
                                                            
                        Fig 2:  The conceptual spacetime model.   
 
The magnitudes of the velocity vectors  υs , υt and υst (in bold) represent the speeds υs (=υ), υt and 
υst (scalar quantities, not in bold) respectively. We will call the angular inclination  θ of a frame’s 
velocity in spacetime as the spacetime angle. Relative to an observer, υs and υt  are real thus both 
vectors  υs and υt are real and consequently υst  and θ are also real.  
 
Expressing the velocity vector addition in Fig 2 ,    
 
       υst  =  υs  +  υt     ......... Eqn 1     
 
 
Inertial frames within a group are in the same Euclidean space with those in other groups in 
Euclidean spaces that are rotated from each other. We next proceed with the formulation of the 
spacetime geometrical model.  
 
 
1.3  THE SPACETIME GEOMETRY –  THE EUCLIDEAN SPACE-TIME (EST)  
       DIAGRAM. 
 
To formulate the geometry we put forward the next postulate,  
 
    Postulate 2:  Relative to an observer the velocity in spacetime of any inertial   
                          frame remains the same at  c. 
 
Applying this postulate , the magnitude of υst is an invariant c. Linden [1] has proposed that 
velocity in time is a physical property in the time dimension analogous to velocity in spatial 



Page | 4  
 

dimensions (i.e. velocity in space) linked by a constant velocity c. Since │υst │= υst = c by 
postulate , the scalar expression of the vector addition in Eqn 1 is 
   
      c 2  =  υs 

2  +  υt 
2   ............  Eqn 2 

 
From Eqn 2, the spacetime geometry (Fig 3) is governed by the functions of a circle. We will 
call it as the Euclidean Space-Time (EST) diagram.  
  
                             x4 –axis  
                       
                                                                                                            
                              c  
                                                                                                           
                                                                                       Inclined-axis  
 
 
                                                          
                               υt               υst (= c)                           
                             
                                                 θ  
                                                                                                     x1-axis     
                              O                υs (= υ)                                       c              
                         
                   Figure 3:  The circular function EST diagram. 
  
 
 Inertial frames always move at velocity in spacetime c along a trajectory at an angle θ  that 
uniquely corresponds to its velocity υ. The magnitudes of the vector components of  υst  are 
│υs│= υs = υ and │υt│= υt. From Fig 3, υs (= υ) cannot exceed c consistent with causality 

requirements.  For the case when υs (= υ) = 0, υst is exactly along the x4-axis with θ = 
2
π

 
and      

υt = c. Thus a ‘rest’ frame has υt = c along the x4-axis which represents the proper clockrates.   
 
Since  υt  is proportional to clockrates, the clockrates ratio between a moving and rest frame is  
 

                           =
frame rest of υ

frame moving of υ
     

t

t   

 

                           =    
c
υt   

 
     ...................  Eqn 3  
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If the clock readings in the moving and reference rest frame is denoted as τ and t respectively, the  
ratio of the difference in the clock readings between the moving and rest frame is 
   

                              =   
12 tt −

− 12 ττ  
 
 

 

                               =   
t 
τ 

Δ
Δ

   ..................  Eqn 4 

 
The ratios of the moving and rest frame’s clockrates and the difference in their clock readings are 

the same. Equating Eqn 3 and Eqn 4,  υt  =  c 
t Δ

Δτ  . 

 
Expressed in differential form in the limit  ∆t → 0 , 
 

                            υt = c 
dt
dτ    .............  Eqn 5. 

 
For convenience, we fixed a frame’s velocity in space along the x1-axis. For the case in any 

direction,   υs = υ  = 
dt
dx . Based on the idea that all forms of matter and energy move at velocity 

of light, Bradford [2]  has conceptualized a circular geometry with the 4th -dimensional ‘velocity 

in time’ axis as 
dt
d c τ  and the ‘velocity in space’ axis as 

dt
dx   (= υ ) consistent with our EST 

diagram.  
 
The velocity in space υs for any direction in the x1-x2-x3-axes of space is  
   

             υs  =   2
x3

2
x2

2
1x     υυυ ++  

 

              υs =  
 

32

dt
dx  

dt
dx  

dt
dx 

222
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⎜
⎝
⎛    .....................  Eqn 6 

 
Substituting  υt and υs from Eqn 5 and Eqn 6 into Eqn 2. 
 

    c 2 =  
2222

⎟
⎠
⎞
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dt
dx   
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dx   
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dx 321 τ   ....................... Eqn 7 
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Both υs (= υ ) and υt constitute an observer’s  physical reality, therefore the 2 axes in the EST 
diagram are real. All the terms in Eqn 7 are motion parameters with the invariant velocity in 
spacetime c on the LHS and its 4-vector velocity components on the RHS.  
 
Re-arranging Eqn 7,   
 
(c dt) 2 =  (dx1) 2 + ( dx2) 2 + (dx3) 2 + ( c dτ) 2   ……..… Eqn 8  
  
which is the Euclidean form representation of the Minkowski metric. 
 
Substituting the Lorentz invariant ds = icdτ , into Eqn 8,   
 
(ds) 2 =  (dx1) 2 + ( dx2) 2 + (dx3) 2 – (c dt)2  , the Minkowski metric. 
 
 
The 2 postulates put forward in our formulation is based upon a Euclidean interpretation of SR. 
We will call it as Euclidean special relativity [3], ESR, as recently proposed.  The model 
corresponds with the Euclidean re-formulation of relativistic dynamics by Montanus [4] and 
Gersten [5]  .   
 
Since υs = υ , from Eqn 2,   
  

   υt  =  22   c υ−   ............. Eqn 9 
 

From the EST diagram,  cos θ  = 
st

s

υ
υ

 = 
c
υ

  . Substituting  υ = c cos θ  into Eqn 9,  υt  =  c sin θ.  

Eqn 2 reduces to the trigonometric identity ,  1= cos2 θ + sin2 θ.  Adopting a convention where υ 
is positive (+ve ) for receding motion and negative (–ve ) for approaching motion, as υ ranges 

from 0 to c , θ  ranges from 
2
π  to 0  and as υ ranges from 0 to (– c) , θ ranges from  

2
π  to π. The 

circular function for the whole range is represented by the right quadrant  (
2
π  ≥  θ  ≥ 0 ) and left 

quadrant  (
2
π  ≤   θ ≤  π ) respectively.  Since υ = c cos θ, for approaching motion range, the 

cosine changes from +ve  to  –ve  and only the right quadrant ( Fig 3) is needed to represent both 
directions.  
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1.4   DERIVING THE RELATIVISTIC TIME AND SPACE VARIATION. 
 
The clockrates ratio of a ‘moving’ and a ‘rest’ frame 1  is   
 

 
)c( frame rest of υ 

frame moving of υ 
   

t

t

=
 =   

c
 c 22 υ−   =   2

2

c
  1 υ
−  

 
Clockrates are inversely proportional to time dilation (TD), thus  
 
 

              TD ratio  =  

2

2

c
  1

1
υ

−

   .......................  Eqn 10  

 
When υ<<c, tυ ≈ stυ  = c and the constancy of υst = c (universal velocity) reduces to the 

constancy of υt = c (universal time). Substituting υ = c cos θ, the clockrate and TD ratios are    
sin θ  and cosec θ  respectively. Due to time dilation, the clock readings τ represents the ‘proper’ 
time elapsed in the moving frame. When υ → c, θ → 0  and the clockrate ratio, sin θ → 0  and 

TD ratio cosec θ → ∞ . When υ<<c, θ  ≈ 
2
π  and the ratios are sin θ ≈ 1 and cosec θ ≈ 1.      

  

In the EST diagram, the reference ‘rest’ (i.e. υ = 0)  frame moves along the x4-axis at speed c.  A 
‘moving’ (i.e. υ ≠ 0) frame is inclined at an angle (θo – θ) where θo (= π/2) and θ are the 
spacetime angles when at ‘rest’ and ‘moving’ respectively.  If L rest and  L moving  are the observed 
lengths of a frame at ‘rest’ and ‘moving’ , then  L moving =  L rest  ×   cos (θo – θ).  
 

space variation ratio  =  
rest

moving

L
L

   =  ( )
rest

orest

L
   cos   L θθ −×    =  cos (θo  - θ) = cos ⎟

⎠
⎞

⎜
⎝
⎛ −θπ   

2
 = sin θ 

 

Substituting  cos θ = 
c
υ  into the trigonometric identity sin2 θ + cos2 θ = 1,  

 

space variation ratio = 2

2

c
  1 υ
−    ............... Eqn 11 

 

                                                            
1 Since all bodies have a universal velocity c in spacetime, “moving” and “rest”  hereon refers to its velocity in                   
space υs , which is the same as the conventional velocity υ.  
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Similarly,  υt of a moving frame is c cos(θo – θ) and the time variation ratio can alternatively     

be derived as c cos (θo – θ ) /c = sin θ =  2

2

c
  1 υ
−

 
.  For approaching motion, 

2
π  ≤  θ ≤  π  and 

sin (π – θ ) = sin θ  showing the space and time variation , sin θ , remains the same for both 
directions. When υ<<c, θ ≈ θo =

2
π  and sin θ ≈ sin θo =1.The variations are negligible and it can 

practically be assumed that bodies move in Euclidean space for this case. As υ → c, θ → 0 and 
sin θ → 0, implying a body approaches a singularity as its velocity υ approaches c.  
 
 
In the EST diagram, the space and time variation are conveniently modeled as a common 
spacetime variation with a single-axis, the velocity spacetime vector. The spacetime aberration, 

⎟
⎠
⎞

⎜
⎝
⎛ −θπ   

2
, is the rotation away from the ‘proper’ time  x4-axis  and ‘proper’ length x1-axis. Fig 4 

shows these 2 axes as orthogonal with both rotating in the same direction. 
      
                                                            
                                   x4-axis    
                                                                  
                                     υt rest                 x4’-axis     
 
                                                          υt moving  
                                         π/2 – θ 
                                          
 
                                                      θ 
 
                                                                           Length rest        x1-axis 
                                                        (π/2 – θ) 
 
                                                                         Length moving  
                                                                                        
                                                                                     x1’- axis  
                                                                                                     
                  Fig 4:  The θ relationship with space and time variations.  
 
 
The variation ratio is the projection of the inclined x1’-axis space and x4’-axis time onto the 

‘proper’ x1-axis space and x4-axis time respectively. The time variation ratio  =
Rest t

 Movingt

υ
υ

= 

c
2

 cos c ⎟
⎠
⎞

⎜
⎝
⎛ θπ   -

    =  sin θ. Also if the observed length of a moving and rest frame is L’ and L, the 
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space variation ratio = 
L
L '   =  

L
2

cos L ⎟
⎠
⎞

⎜
⎝
⎛ θπ - 

 = sin θ.  By postulating [6] objects move in time 

(4th speed) with a constant ‘flow’ c and assuming  υ = c cos θ , the variations are shown as sin θ
 consistent as derived above.  

 

From the EST diagram  
c

  cos υθ = .   Applying trigonometric identities  

 

      

2

2

c
1

1      cosec
υ

θ
−

=    and   

2

2

c
1

c/     cot
υ

υθ
−

=   

 
The 1st and 4th equations of the Lorentz transformation written as  
 

x1’ =    

2

2

c
1

1
υ

−

 x1  –  

2

2

c
1

c/
υ

υ

−

 x4     ..…….. 1st  Eqn  

 

x4’ =   − 

2

2

c
1

c/
υ

υ

−

  x1  +  

2

2

c
1

1
υ

−

 x4     .……..  4th  Eqn  

 
are re-expressed using the angular velocity parameter, θ , in trigonometric form as    
 
x1’ =  (cosec θ) x1 – (cot θ) x4  …….  1st  Eqn  
 
x4’ =  −(cot θ) x1 + (cosec θ) x4  ……  4th  Eqn  
 
as compared to expressing it in hyperbolic form presently using SR with the angular velocity 
parameter rapidity α  as  
 
x1’ = (cosh α) x1 – (sinh α) x4  …… 1st Eqn 
 
x4’ = −(sinh α) x1 + (cosh α) x4  ….. 4th Eqn 
 
We derived the relativistic equations consistent with the Lorentz transformation applying 
relativity principles based only on the invariance of the relations between many equivalent 
reference frames obeying a group law. Leblond [7] has derived the Lorentz transformation based 
on the invariance of the relations between inertial frames, “ The principle of relativity is first 
stated in general terms, leading to the idea of equivalent frames of reference connected through 
inertial transformations obeying a group law. …  This is the point of view from which I intend to 
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criticize on the overemphasized role of the speed of light in the foundations of special relativity.”  
He states, “ The Lorentz case is characterized by a parameter with the dimensions of a velocity 
which is a universal constant associated with the very structure of space-time”. 
 
 
 
1.5   THE  EST DIAGRAM  IN TERMS OF THE ORIENTATION ANGLE φ.     
 

The aberration ⎟
⎠
⎞

⎜
⎝
⎛ −θπ   

2
 represents a body’s orientation in spacetime and we will call it as the 

orientation angle φ . Similar to studying relativistic variations as a function of θ, (f(θ)) , we can 
alternatively study it as a f(φ).    
 
                             x4 –axis  
                       
                                                                                                            
                              c  
                                                                                                           
                                                                                       Inclined-axis  
 
 
                                                υst (= c)          
                                            φ                            φ        
                                   =(π/2– θ)                                 υt 
                                                θ  
                                                                                                     x1-axis     
                              O                υs (= υ)                                       c              
                         
            Figure 5:  The EST diagram in terms of orientation angle φ . 
  

From Fig 5 , the relationship between φ , υs and υst is sin φ = 
st

s

υ
υ

 
 

   

Since sυ  = υ and stυ =  c,  sin φ  =  
c
υ   …..….  Eqn 12    

 
Applying trigonometric identities,  from Eqn 12 ,  
     

  sec φ  = 

2

2

c
υ1

1  
−

     and   tan φ  = 

2

2

/

c
υ1

cυ  
−
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The Lorentz transformation equations re-expressed as a f(φ) in trigonometric form is    
 
x1’ =  (sec  φ) x1 – (tan φ) x4  …… 1st Eqn  
 
x4’ =  −(tan φ) x1 + (sec φ) x4  ….. 4th Eqn  
 

By postulating  sin φ = 
c
υ ,  Majernik [8]  has expressed the Lorentz transformation equations in 

trigonometric form as a f(φ) and alternatively as f(θ). He states, “ The above trigonometric form 
of the Lorentz transformation is interesting not only from a formal point of view, but may serve 
as a starting point for expressing other relativistic quantities in terms of trigonometric functions 
and for the formulation of relativistic relations in the language of trigonometry.”  Although a 
physical interpretation for φ is not shown, by investigating [9] on photons received from a 
moving body, it is shown that Majernik’s space-time angle φ is an aberration angle which 
corresponds with our model. This relationship sin φ = υ/c also appears in Loedel’s diagram[10].  
By investigating on the spherical wavefront of a light pulse [11], a 4-coordinate manifold of SR 
has been modeled governed by the functions of a circle. 
 
The relativistic variations expressed as a f(φ) are :- 
 

 time variation ratio = clockrates ratio  =  cos φ =  2c
υ1

2

−  ……. Eqn 13  

 
The inverse is  time dilation ratio =  sec φ    
 

space variation ratio  =    cos φ  = 2c
υ1

2

−
 
 ............. Eqn 14   

                                 
 
When  υ<<c, φ ≈ 0 and  cos φ ≈ 1 and sec φ ≈ 1. Thus the variations are negligible for this case. 
Applying Pythagoras theorem (Fig 5), the relationship between υst (= c) ; υs = υ = c sin φ  and      
υt = c cos φ  is the identity  sin 2φ + cos 2φ = 1. When υ = 0, φ = 0; when υ = c, φ =π/2 and when 

υ = − c, φ = − π/2 .  The φ  range corresponding to  –c ≤ υ  ≤ c  is   
2
π

− ≤ φ ≤   
2
π .  In this case   

υ = c sin φ  and cos φ  (and sec φ ) for both receding and approaching motion remains the same 
(+ve ) consistent with the variations to be independent of these directions.  
 
 
In the EST diagram, a body moves along an inclined trajectory at an angle φ subtended between 
the vertical time –axis of the observer and the inclined time-axis of the observed body. Moving 
bodies have been investigated [13] in terms of trajectories at an angle ϕ  (same as φ) between the 
time-axes of an observer and observed body with expressions V = sin ϕ  and √(1− V 2 ) = cos ϕ  
(where c=1) consistent with our model. In studying appearances at relativistic speeds [12] by 
investigating how photons emitted from a moving body are received,  the observed space 
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variation is described in terms of an angular rotation = 2

2
11

c
υ1 cos    

c
υ  sin −= −−  which 

corresponds with the orientation angle φ in our model.  It is of interest that the work by [9], [11] 
and [12] studying on photons received from a moving body based on the constancy of light 
velocity c produces results consistent with the EST diagram.  
 
 
 
1.6  THE EST DIAGRAM OFFERS AS A VIABLE ALTERNATIVE.      
 
From the 2 postulates of ESR, a velocity vector spacetime model, the EST diagram, was 
formulated. Compared to the ST diagram as formulated from SR, (a) the 1st postulate is applied 
solely based on relativistic velocities thereby avoiding the background dependent [14] position 
coordinates and (b) the  2nd postulate uses the constancy of  velocity in spacetime c for all inertial 
frames instead of restricting to the constancy of velocity (in space) c of light. Since ESR is based 
on a re-interpretation of the SR postulates applying broader relativity principles, the derived 
equations are consistent with SR.     
  
With a real 4th - dimensional time parameter, the EST diagram has a Euclidean  (++++) metric.  
The relativistic variations were expressed in terms of a real spacetime angle θ (or alternatively 
the orientation angle φ ) governed by a circular function.  The Lorentz transformation equations 
were expressed in trigonometric form using the angular velocity parameter  θ or φ instead of in 
hyperbolic form using rapidity α. It is with interest we note the de Broglie waves can be 
expressed in terms of φ  in trigonometric form[8] with the relativistic relationships correlated 
graphically by a single diagram.  Also based upon a wave field system[15], a diagram 
corresponding with the EST diagram has been presented. 
 
In conclusion, the consistency of the EST diagram with Lorentz transformation equations offers 
a new geometrical tool to investigate relativistic observations and encourages considerations on 
its viability to serve as a convenient alternative to the ST diagram.   
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