APPENDIX TO PAPER 5

THE MATHEMATICAL RELATIONSHIP BETWEEN EUCLIDEAN SPACE AND RAPIDITY SPACE.

(Paper 5: *Velocity addition formula from euclidean space analogue*, www.euclideanrelativity.net, S. Kanagaraj, 20 Dec 2009).

 $\Box \quad \text{The relationships between velocity } v, \text{ rapidity } \alpha, \text{ Lorentz ratio } \gamma, \text{ proper velocity } V, \\ \text{orientation angle } \phi \text{ and spacetime angle } \theta \text{ are shown below.}$

	f(v)	f(α)	f(y)	f(V)	f(ø)	f(θ)
Velocity, <i>v</i>	υ	tanh α	$\frac{\sqrt{\gamma^2 - l}}{\gamma}$	$\frac{V}{\sqrt{I+V^2}}$	sin ø	cos θ
Rapidity, α	arctanh v	α	$\frac{\arctan h}{\frac{\sqrt{\gamma^2 - 1}}{\gamma}}$	arcsinh V	arctanh(sinø)	arctanh(cos θ)
Lorentz ratio, γ	$\frac{l}{\sqrt{l-v^2}}$	cosh a	γ	$\sqrt{l+V^2}$	sec ø	cosec θ
Proper velocity, V	$\frac{v}{\sqrt{l-v^2}}$	sinh α	$\sqrt{\gamma^2 - l}$	V	tan φ	cot θ
Orientation angle, ϕ	arcsin v	arcsin(tanhα)	arcsec y	arctan V	φ	$arcsin(cos \theta)$
Spacetime angle, θ	arccos v	$arccos(tanh \alpha)$	arccosec y	arccot V	arccos(sin ø)	θ

1. <u>Table 1: The relationships between $v, \alpha, \gamma, V, \phi$ and θ .</u>

<u>Note</u>: The relationship between v, α and γ are familiar while the variables V, ϕ and θ are introduced in euclidean interpretation of relativity.

2. The differential relationship between v, α , γ , V, ϕ and θ .

(i) From $v = tanh \alpha$, $\frac{dv}{d\alpha} = sech^2 \alpha$ and $\frac{d\alpha}{dv} = cosh^2 \alpha$ From Table 1, $cosh \alpha = sec \phi = cosec \theta = \frac{1}{\sqrt{1-v^2}} = \gamma = \sqrt{1+V^2}$

Thus
$$\frac{d\alpha}{dv} = \sec^2 \phi = \csc^2 \theta = \cosh^2 \alpha = \frac{1}{1 - v^2} = \gamma^2 = (1 + V^2)$$

(ii) From
$$v = \sin \phi$$
, $\frac{dv}{d\phi} = \cos \phi$ and $\frac{d\phi}{dv} = \sec \phi$
From $v = \cos \theta$, $\frac{dv}{d\theta} = -\sin \theta$ and $\frac{d\theta}{dv} = -\csc \theta$

Thus
$$\frac{d\phi}{dv} = \sec \phi = -\frac{d\theta}{dv} = \csc \theta = \cosh \alpha = \frac{1}{\sqrt{1-v^2}} = \gamma = \sqrt{1+V^2}$$

(iii) From
$$V = \frac{v}{\sqrt{1 - v^2}} = v(1 - v^2)^{-1/2}$$

$$\frac{dV}{dv} = v\left\{\left[-\frac{1}{2}\left(1-v^{2}\right)^{-3/2}\right]\left(-2v\right)\right\} + (1-v^{2})^{-1/2}$$
$$= \frac{v^{2}}{(1-v^{2})\sqrt{1-v^{2}}} + \frac{1}{\sqrt{1-v^{2}}}$$
$$= \frac{v^{2}+(1-v^{2})}{(1-v^{2})\sqrt{1-v^{2}}}$$
$$= \left(\frac{1}{\sqrt{1-v^{2}}}\right)^{3}$$

$$= \gamma^3$$

Thus $\frac{dV}{dv} = \gamma^3 = \sec^3 \phi = \csc^3 \theta = \cosh^3 \alpha$

(iv)
$$\frac{d\phi}{dV} = \frac{d\phi}{d\upsilon} \times \frac{d\upsilon}{dV}$$

 $= \gamma \times \frac{1}{\gamma^3}$
 $= 1/\gamma^2$
Thus $\frac{dV}{d\phi} = \gamma^2 = \sec^2 \phi = -\frac{dV}{d\theta} = \csc^2 \theta = \cosh^2 \alpha = \frac{1}{1-\upsilon^2} = 1+V^2 = \frac{d\alpha}{d\upsilon}$

(v)
$$\frac{dV}{d\alpha} = \frac{dV}{dv} \times \frac{dv}{d\alpha}$$

= $\gamma^3 \times \frac{l}{\gamma^2}$
= γ

Thus
$$\frac{dV}{d\alpha} = \gamma = \sec \phi = \frac{1}{\sqrt{1 - v^2}} = \cosh \alpha = \sqrt{1 + V^2} = \frac{d\phi}{dv} = -\frac{d\theta}{dv} = \csc \theta$$

(vi)
$$\frac{d\alpha}{d\phi} = \frac{d\alpha}{d\upsilon} \times \frac{d\upsilon}{d\phi}$$

= $\gamma^2 \times \frac{l}{\gamma}$
= γ

Summary of the differential relationship

$$-\frac{d\theta}{d\upsilon} = \frac{d\phi}{d\upsilon} = \frac{dV}{d\alpha} = \frac{d\alpha}{d\phi} = \gamma$$
$$-\frac{dV}{d\theta} = \frac{d\alpha}{d\upsilon} = \frac{dV}{d\phi} = \gamma^{2}$$
$$\frac{dV}{d\upsilon} = \gamma^{3}$$

3. Investigating the addition of rapidity α and proper velocity V from the integral functions of rapidity space and euclidean space.

In rapidity space, $\frac{d\alpha}{dv} = \gamma^2$, where $\gamma = \frac{1}{\sqrt{1-v^2}}$. Thus $\alpha = \int \gamma^2 dv$. This translates as rapidity α is the area under the graph of γ^2 vs v. In euclidean space, $\frac{dV}{dv} = \gamma^3$, thus $V = \int \gamma^3 dv$. This translates as the proper velocity V, is the area under the graph of γ^3 vs v.

Graph of γ^2 vs v and γ^3 vs v for range of $\theta < v < 1$

For the velocity v range 0 < v < 1, both the graphs $\gamma^2 \& \gamma^3$ ranges from 1 to ∞ and at low velocities both remains close to 1, showing $v \approx \alpha \approx V$ when v <<1. Since $\gamma^3 > \gamma^2$, for the same area under the graphs representing the proper velocity V and rapidity α , the velocity v from euclidean space is slightly less than its corresponding value in rapidity space. (This is consistent with *Fig 2* graph in paper 5).

Noting that $\gamma = \sec \phi$ and $dv = \cos \phi d\phi$ (from 2*i* & 2*ii* above), the integral function of rapidity α and proper velocity V can be expressed in terms of ϕ instead of v.

From
$$\alpha = \int_{0}^{v} \gamma^{2} dv$$
, substituting γ and dv ,

$$= \int_{0}^{\phi} \sec^{2}\phi \cos \phi d\phi$$

$$= \int_{0}^{\phi} \sec \phi d\phi$$

$$= \ln(\sec \phi + \tan \phi)$$

Thus $e^{\alpha} = \sec \phi + \tan \phi$. From this, $e^{\alpha} = \frac{l + \sin \phi}{\cos \phi}$ and $e^{-\alpha} = \frac{\cos \phi}{l + \sin \phi}$. Substituting into $\frac{e^{\alpha} - e^{-\alpha}}{e^{\alpha} + e^{-\alpha}}$, the relationship simplifies as $\tanh \alpha = \sin \phi$, consistent with as in Table 1.

From
$$V = \int_{0}^{b} \gamma^{3} dv$$

$$= \int_{0}^{\phi} \sec^{3} \phi \cos \phi d\phi$$

$$= \int_{0}^{\phi} \sec^{2} \phi d\phi$$

$$= \tan \phi$$

This is consistent with $V = tan \phi$ as in Table 1.

Since sec $\phi = \gamma$, for the graph γ vs ϕ (rapidity space) and γ^2 vs ϕ (euclidean space), the ϕ range is $0 < \phi < \frac{\pi}{2}$ corresponding with *v* range 0 < v < 1. Alternatively expressed as a $f(\theta)$, the resulting equations are consistent with the above.