APPENDIX TO PAPER 6

THE De BROGLIE WAVES CONNECTION WITH THE EUCLIDEAN MODEL.

(Paper 6: *The advantage of euclidean interpretation of relativity* www.euclideanrelativity.net, S. Kanagaraj, 19 Feb 2010).

Using the mathematical postulate, $v = c \sin \phi$, *Majernik* has shown the connection between important relativistic quantities for particles with de Broglie waves as follows:-

• de Broglie phase waves

The x and t components of the 4-velocity are $v_1 = \gamma v$ and $v_4 = \gamma c$. Substituting $v = c \sin \phi$ and $\gamma = sec \phi$, then $v_1 = c \tan \phi$ and $v_4 = c \sec \phi$. Since $sec^2\phi - tan^2\phi = 1$, thus $v_4^2 - v_1^2 = c^2$, showing that the 4-velocity vector magnitude is invariant under Lorentz transformation. Also

 $E = \gamma m_o c^2 = m_o c^2 (\sec \phi)$

and

 $p = \gamma m_o v = m_o c \ (tan \ \phi)$

Again using the above trigonometric relationship, $E^2 - p^2 c^2 = (m_o c^2)^2$

Using the Einstein and de Broglie 'connections'

E = hv [1] and $p = h/\lambda$ [2]

From [2], the wavelength associated with a particle of rest mass m_o may be written as

 $\lambda = (h/m_o c)(\cot \phi) = \lambda_o (\cot \phi) \dots [3]$

where $\lambda_o = h/m_o c$ is the Compton wavelength of m_o .

From [1], the frequency ν of this phase wave is

$$v = mc^2/h = (m_o c^2/h) (sec \ \phi) = v_o (sec \ \phi) \dots [4]$$

where a 'Compton frequency' $v_o = m_o c^2/h$ is defined in analogy with the Compton wavelength λ_o .

Noting that $\lambda_o v_o = c$, the phase velocity v_{ph} of the de Broglie phase wave may be written as

$$v_{ph} = \lambda v = c \ (cosec \ \phi) \ \dots \ [5]$$

For completeness, the group velocity of the phase wave is also calculated,

$$v_{gr} = \frac{dv}{dk}$$
[6], where k is the wavenumber $k = 1/\lambda$.

By using [3], k can be expressed trigonometrically as

$$k = (tan \phi) / \lambda_o = k_o (tan \phi) \dots [7], \text{ where } k_o = 1 / \lambda_o$$

Since both v and k depend on the angle ϕ , from [4] and [7], we can write

$$v_{gr} = \frac{(d\nu/d\phi)}{(dk/d\phi)} = c \ (sin \ \phi) \quad \dots \dots \quad [8]$$

This is identical to the mathematical postulate $v = c (sin \phi)$ because the group velocity of the de Broglie waves corresponds to particle velocity v.

The internal consistency of the trigonometric approach is further verified by multiplying v_{ph} and v_{gr} (eqns [5] & [8]) which should yield c^2 .

$$v_{ph}v_{gr} = c \ (cosec \ \phi) \ c \ (sin \ \phi) = c^2.$$

Similarly as in the case of particle dynamics which yields $E^2 - p^2 c^2 = (m_o c^2)^2$, the trigonometric identity $sec^2 \phi - tan^2 \phi = 1$, yields the relativistic dispersion relation for de Broglie waves,

$$(v/v_o)^2 - (k/k_o)^2 = 1$$

or $v^2 = c^2(k_o^2 + k^2)$

• Graphical representation

The Einstein's and de Broglie's quantities are corelated graphically by a single diagram.

The simple graphical technique in the above diagram is an extension of the frequently used "mnemonic" right triangle with *E* as hypotenuse and *pc* and m_oc^2 as its sides. The diagram shows the correlation of the relativistic particle quantities with the corresponding de Broglie quantities. From trigonometric identities and/or Pythagorean theorem, a number of basic relationships may be derived directly from this diagram.

Not shown in the figure are the components of the 4-velocity, $v_1 \& v_4$. Associating these quantities with the appropriate segments of the right angled triangle, the invariance relationship $v_4^2 - v_1^2 = c^2$ can be obtained directly from the figure.

Note :

The data shows the orientation angle ϕ in the euclidean diagram has an intimate relationship with both the above quantities. In *Paper 6*, the connection between the (a) velocity in space v_s and velocity in time v_t and (b) momentum p and energy E of a frame is given by $\sin^2 \phi + \cos^2 \phi = 1$ and $\sec^2 \phi - \tan^2 \phi = 1$ respectively. The connection between λ/λ_o and $c/v_{gr} = v_{ph}/c$ is again given by the trigonometric identity $\csc^2 \phi - \cot^2 \phi = 1$. Alternatively these connections may be expressed as a function of the space-time angle θ as $\cos^2 \theta + \sin^2 \theta = 1$; $\csc^2 \theta - \cot^2 \theta = 1$ and $\sec^2 \theta - \tan^2 \theta = 1$ respectively.

----- *END* -----