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                                                                Abstract 
The momentum and energy variation equations are derived from a 4-Euclidean space analogue model of a 
moving body. The equations are expressed in terms of a real angular rotation φ ( or alternatively θ ) in 
trigonometric form. The relativistic variations are explained in terms of a geometric property without 
invoking the problematic relativistic mass concept.  
   
1.0 Introduction. 
 
The relativistic variation in space and time were derived from the Euclidean space analogue of a 
moving body, the Euclidean space (ES) diagram [1]. In this paper, the ES diagram is applied to 
derive the momentum and energy variation equation. The variations are explained as due to a 
real 4-dimensional rotation that uniquely corresponds to the velocity υ of a body and expressed 
in trigonometric form. 
 
 
2.0 Momentum equation. 
 
The momentum p of a body is by definition the product of its mass with velocity. Thus  
   
      momentum =  mass × velocity .  
  
In the ES diagram, the velocity of a body in 4-Euclidean space analogue is the proper velocity V.  
We adopt that mass m of a body is a constant. 
 
               Thus, p = mV ……. Eqn 1   
 
Eqn 1 corresponds to classical mechanics with momentum p directly proportional to velocity V.     
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In the ES diagram, the proper velocity V is the rate of the proper displacement, S, thus
dt
dSV = . 

Its observational viewpoint component, the conventional velocity, υ, is the rate of observed 

displacement, s, thus 
dt
ds =υ .  The path of the proper displacement is inclined at an angle φ from 

the path of the observed displacement.  
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When  υ <<c, γ  ≈ 1 and V ≈ υ . For this special case, the momentum equation reduces to a good 
approximation as  p = mυ. Noting that sin φ  = υ/c, the momentum equation  p = mV  expressed 
as a function of the orientation angle φ is  
 
                 p = mc tan φ. …. Eqn 2 .  
 
With mc a constant, from Eqn 2, the momentum variation is due to a rotation φ  in 4-Euclidean 
space. When  υ<<c, φ  is small. For this case tan φ  ≈  sin φ, thus p = mc tanφ  ≈  mc sin φ  = mυ. 
Alternatively expressed as a function of the spacetime angle θ,  p= mV = mc cot θ.  For the case 
υ<<c,  θ ≈ π/2 and cot θ ≈ cos θ and consequently  p= mc cot θ  ≈ mc cos θ  = mυ. The required 
positive (+ve) and negative (–ve ) sign change for receding and approaching motion appears 
naturally for both the angles φ and θ .  
 
 
3.0 Acceleration 
 
For a frame physically moving at increasing velocity υ along the x1-axis, there is a corresponding 
increase in its V and φ values. For this case where the velocity varies for different time intervals, 

the instantaneous conventional velocity υ, is 
tδ
sδυ =  where δs is the incremental displacement 

along the x1-axis and δt  is the incremental time interval.  In the limit  δt → 0, 
dt
ds =υ . Similarly, 

its instantaneous proper velocity V along the inclined x1’- axis is  
t
SV
δ
δ

=  where δS is its 

incremental displacement along the inclined  x1’- axis and δt is the incremental time interval.  In 

the limit δt→ 0, 
dt
dSV =  .     
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Conventionally, the acceleration , a , of a frame is the rate of change in its (conventional) 

velocity υ , thus a  =
dt
d υ .  The proper acceleration  A of a frame is the rate of change in its proper 

velocity V , thus A = 
dt
dV .  Similar to how we denoted the velocity of a body as υ and V , we 

denote the acceleration of a body as the conventional acceleration, a , and the proper 
acceleration,  A. 1 
 
 
These relationships are summarized as  
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     A  re-expressed as a function of υ is :- 
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When υ<<c , γ  ≈ 1 and  A ≈
dt
d υ  = a . Also since γ = sec φ = cosec θ [1], for this case φ ≈ 0, sec φ 

≈ 1 and θ  ≈ π/2, cosec θ  ≈ 1 which is consistent with the above. 
 
 
 
4.0 Force relationship 
 
The force applied on a body and the rate of change in its velocity is  
 
 
        Force  =  (Mass of body)  ×  (The rate of change in its velocity) .   
 
 

                                                            
1 Applying the ES diagram, the displacement s,  velocity υ and acceleration a  are respectively transformed to its 
‘proper’ displacement S, ‘proper’ velocity V  and ‘proper’ acceleration  A resulting in a proper quantities formulation 
of  relativistic dynamics.   
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It is assumed the body is rigid and moving freely without changing its mass. Classically, this 
force equation in its vector differential form is   
 

                 F =  ma =  m
dt
dυ  =  m 2

2

dt
d s   

where   
            F  = force applied (along the direction of its motion)  
            a  =  conventional (i.e. observed)  acceleration   
            υ  =  conventional (i.e. observed) velocity      
            s   =  observed displacement  
            t   =  time  (using reference observer’s clock)    
            m  =  mass of body  
 

Since m is a constant,     F = ( )υm
dt
d  = 

dt
dp    

  
These classical equations were formulated on the assumption a body moves in Euclidean space. 
The rate of change in velocity υ is proportional to the force F consistent with Newton’s 2nd law 
of motion. It implies that if the force is applied continuously, the velocity would increase 
indefinitely without any limitation. With the introduction of relativistic physics, it became 
evident the assumption that a body moves in Euclidean space is only valid to a good 
approximation for the case υ <<c and that υ reaches a limitation of c. This implies to apply the 
classical equations with mathematical validity, a moving body should be referenced to a 
Euclidean space analogue. The ES diagram satisfies this requirement to study relativistic 
dynamics  conveniently in close correspondence to classical physics. 
 
 
We adopt the force equation in its vector differential form as  
 

                  F =  mA  =  m
dt
dV  = m 2

2

dt
d S   ............ Eqn 3     

 
 
Where  A = proper acceleration ;  V = proper velocity ;  S = proper displacement  
 

Since m = constant,  re-arranging,  ( )VF m
dt
d  =  

dt
dp

=     
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From Fig 1, for a force F along the x1-axis, its component along the x1’-axis that contributes to a 
change in the proper velocity V of the body in the ES diagram is F cosφ .  
 
 
                                                                 
                                                                x4-axis                                         
                                                                                                                x1’-axis  
 
 
 
                                                                               BODY    
                                                                         mass = m  
                                        F                                φ 
                                                                                                                      x1-axis  
                                                 φ              
                  F sinφ 
                                             F cosφ 
 
 
 
               Figure 1 : The components of force F in relation to the ES diagram.  
 

Since cosφ  = 2

2

c
υ1− , as υ increases, cosφ decreases and the component force reduces with 

increasing speed. It would seem that more force F has to be applied to produce the same rate of 
increase of its velocity υ at higher speeds. As velocity υ of a body approaches c,  φ  approaches 
π/2  and cos φ → 0. The component force along the inclined x1’-axis also approaches 0 implying 
the limitation of υ relative to an observer is c consistent with observations.  
        
 
5.0 Energy equation 
 
The work-energy theorem states the change in a body’s kinetic energy is equal to the net work 
done on that body. We assume the investigated body is rigid and moving freely. The work done 
on the body, W, due to a force, F , along its direction of motion completely contributes towards 
changing the kinetic energy, Ek , of that body. For this case, Ek = W and thus the incremental 
changes δEk and δW are equal.    
 
                 WEk δδ =  …….  Eqn 4   
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Since work done (W) = force (F) × displacement (x), the incremental relationship is δW = F δ x 2    
 
If the force applied is inclined at an angle Φ from the direction of motion, this equation is written 
as  
 
                 Φcos FW =δ xδ  ……  Eqn 5   
 
From Eqn 4  & 5,  Φcos FEk =δ xδ .  In the limit as δx → 0,  
  
                Φcos FdEk = dx  …….  Eqn 6  
  
 
                    
                                                         V + dV 
                                                                                  V          Inclined x1’-axis 
                                                                                   
 
 
 
                          dφ                                     F cosφ 
 
 
                         φ                                            F  
                                                                                                Horizontal x1-axis 
 
 
           Figure 2 :The incremental change in V and φ  due to a force F.  
   
Fig 2 shows how the force F applied to a body along the  x1-axis (its observed direction of 
motion),  is represented in the ES diagram where a body is studied analogous to moving at 
proper velocity V at an angle φ in  4- Euclidean space along the inclined x1’-axis. dV  and dφ  are 
the body’s  incremental changes in proper velocity and orientation angle due to the force F.   
 
In the ES diagram, the displacement S of a moving body is at an angle φ along the inclined x1’-
axis.  Substituting the incremental displacement dx and angle Φ in Eqn 6 with dS and φ  
respectively, 
 
                                                            
2 Strictly δW ≈ F δx. However since the incremental variation in force δF is negligible as compared to F during the 
incremental displacement δx , the equation is justifiably expressed as δW= F δx.  
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                φcos FdEk = dS  ….…. Eqn 7  
 

Substituting  F =  
dt
dV

m   from Eqn 3 into Eqn 7,   

 

                φ cos 
dt
dVmdEk ⎟

⎠
⎞

⎜
⎝
⎛=  dS   ..…... Eqn 8 

 

Re-arranging Eqn 8,  φ cos 
dt
dSmdEk ⎟

⎠
⎞

⎜
⎝
⎛=  dV  

 

Since V
dt
dS

= ,    φ cos mVdEk = dV   ..…… Eqn 9 

 

From the ES diagram,  φ tan cV =   and  φ
φ

2 secc  
d
dV

= .   Substituting V and dV  into  Eqn 9 ,   

 
               )()( 2φφφ  secc  cos tan cmdEk = φd  
         
                      φ tan mc2=  φ sec  φd  …….. Eqn 10 ,  where m and c are constants 
 
Integrating both sides of  Eqn 10 ,   

                   ∫=
φ

φφ
0

2  sec tanmcEk φd  

                        

                                              φ 
                      [ ]φ sec mc 2=  
                                               0  

      
                      )(2 1 secmc −= φ  ……. Eqn  11   
 
Expanding and re-arranging  Eqn 11 ,  
 
                 22 mcE secmc k +=φ  ….….. Eqn 11a    
 
where Ek = the energy of the body due to its motion and mc2 = a constant  
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If we define the total energy E of a body as the sum of its energy due to its motion,  Ek , and a 
constant component when at rest, mc2, from  Eqn 11a we deduce that                                              
 

               φ secmcE 2=  ……. Eqn 12   
  
 Eqn 11a and 12  implies that a rest body possesses energy equal to mc2 consistent with the mass-
energy equivalence. The energy variation is explained as due to a rotation φ in 4-Euclidean space 
in similarity with the momentum equation. Since secφ =[1 – υ2/c2] −1/2 =γ = cosec θ, the energy 
equation can alternatively be expressed as a function of the Lorentz factor  γ   or spacetime angle 
θ  as E = mc2γ = mc2cosec θ. As υ approaches c,  φ approaches π/2 and θ approaches 0 and 
correspondingly E approaches infinity. Thus the velocity υ of a body can only approach but 
never reach c relative to an observer.  
 
 
From binomial expansion, 
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Neglecting the higher orders from power 4 for the case υ<<c, the kinetic energy reduces to the 
classical equation.    
   
 
6.0 Momentum-energy equation  

Re-arranging  equations 2 and 12,   
mc
p     tan =φ  and  2mc

E     sec =φ  

 
Substituting tan φ  and sec φ into the trigonometric identity φφ 22 tan    1     sec +=  ,   
 

                
22

2 ⎟
⎠
⎞

⎜
⎝
⎛+=⎟

⎠
⎞

⎜
⎝
⎛

mc
p    1    

mc
E  

 
Re-arranging and simplifying, 
 
 
                 42222 cmcpE +=  ….…... Eqn 13   
 
The momentum-energy equation (Eqn 13) can alternatively be derived from the energy and 
momentum equations expressed as a f(θ) using the identity,  cosec2 θ  = 1 + cot2 θ . 
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Based upon the mathematical postulate, sin φ = υ/c, Majernik [2]  has given the above 
expressions for p, E and p-E as a function of φ in trigonometric form.   
  
 
7.0 Resolves relativistic mass problem.  
 
In the above derivation, the kinematics of the momentum and energy variations are explained in 
terms of a geometric property as due to a rotation φ of a body in 4-Euclidean space without 
invoking the problematic relativistic mass concept. Adler [3] cites 3 sources [4],[5] & [6] arguing 
that the variations be explained in terms of geometric property and not relativistic mass. If the 

relativistic mass concept is invoked, then the relativistic mass 

2

2

c
υ1

m    M
−

=  and the momentum 

equation is written as υMp = . The force F = 
dt
dp   = ( )υM

dt
d . Substituting F in the work-energy 

relationship, dEk = F ds , then ∫=
M

m
k ds  

dt
)υM(d   E  . Solving this, the energy equation is written 

as E=Mc2. Since M=mγ ,  p=mγ υ  and E=mγ c2  which are consistent with our derivation. Our 
derivation based on constancy of mass corresponds with Einstein’s [4] view, “It is not good to 

introduce the concept of the mass M = ( ) 2122 /c/υ  1
m

−
  of a body for which no clear definition 

can be given. It is better to introduce no other mass than the ‘rest mass’ m ”.  
 
 
8.0 Conclusion   
 
The momentum p and energy E variation equations and the p-E relationship were derived from 
the ES diagram in terms of a real rotation φ in trigonometric form. The derived equations were 
consistent with the standard equations. The ES diagram which is a 4-Euclidean space analogue 
of a moving body offers as a viable alternative to study relativistic dynamics conveniently in 
close correspondence to classical physics. 
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