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                                                       Abstract 
The frequency variation equation is derived in relation to 4-Euclidean metric diagram. The relativistic 
equations are expressed in terms of a real angular rotation φ (or alternatively θ ) in trigonometric form. 
The very small relativistic effect for sound waves due to time dilation is also shown.  
 
1.0 Introduction. 
Based on a Euclidean interpretation of special relativity (SR), the Euclidean space-time (EST) 
diagram was formulated[1] and subsequently transformed into a Euclidean space (ES) analogue 
of a moving body[2]. The relativistic space, time, momentum and energy variation equations 
were derived expressed in trigonometric form as a function of the spacetime angle θ  (or 
alternatively the orientation φ). We next express the relativistic frequency as a function of  θ  (or 
φ ) in trigonometric form.  
 
2.0 Effects contributing to frequency variation. 
When a wavesource with rest frequency νo  is receding at velocity υ, the effect of its position 
changes causes the wavelength λ received to be larger than when at rest λo . The time interval 
between wavefronts, period  T, is larger than To when at rest. For this case, λ > λo ; T > To and 

since 
T
1

=ν , ν < νo . For approaching case λ < λo ;  T < To and ν  > νo . The wavelength change,  

∆λ , with λo  ratio due to this effect is1 
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 with cp , the wave propagation velocity.  Re-

arranging,  
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±= , with (+) and (–) signs for receding and approaching motion 

respectively. Noting ν λ  = cp and assuming constant propagation velocity, 
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From EST diagram, 
c
υ

  θ cos =  , where c is the invariant velocity in spacetime.  If light 

propagation velocity is clight  then  cp = clight = c and   

                                                            
1 This relationship for a wave source moving along a straight path from a stationary observer is derived with ease   
   from first principles.    
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+=   …… Eqn 1    

When receding, υ ranges from 0 to c and the corresponding θ range is π/2 ≥ θ ≥ 0 . When 
approaching, υ ranges from 0 to – c and θ range is  π/2 ≤  θ  ≤ π . The cos θ sign change is 
consistent with the velocity sign change for different directions.  
 
 
Also due to time dilation (TD), a moving wavesource frequency ν  is less than when at rest νo . 

The change in the periods ratio ⎟
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T  due to this effect is the TD ratio, thus    
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Substituting 
c
υ

  θ cos = , 
      ν

ν o

 
 = cosec θ  ………. Eqn 2 

 
For receding and approaching motion,  θ  ranges from π/2 ≥ θ ≥ 0 and π/2 ≤ θ  ≤ π respectively 
with cosec θ sign consistent with time variation as independent of these directions.  
 
 
3.0  Deriving the frequency variation equation.       
 
The resultant frequency variation is the product of the two effects in Eqn 1 and 2.   
For the case of a moving lightwave source,  

               
ν
ν o  =   (1 + cos θ ) cosec θ  

                     =  cosec θ  +  cot θ    ….. Eqn 3    
 
From Eqn 3, 
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Since cos θ  = 
c
υ ,   
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for receding motion with the signs reversed for approaching 

motion, consistent with the relativistic Doppler frequency shift for light.  For a soundwave 
source,   
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where csound  is the soundwave propagation velocity.  As c is the invariant velocity in spacetime , 
the effect due to time dilation remains as cosec θ.  Eqn 4  which accounts for time dilation is 

consistent with the sound Doppler effect [3].  Since 

2

2

c
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1     cosec
υ
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−

=  = TD and for this case   

υ <<<c ,  cosec θ  is very close to 1 . The time dilation correction factor is negligible [4] and 
reduces to classical Doppler shift equation.     
  

Since cos θ  = 
c
υ  =  sin φ , substituting into Eqn 3, the equation is expressed alternatively as a 

function of the orientation angle φ  with the sign change again consistent with relativistic 
requirements, 
 

            ν
νo     tan       sec φφ +=  ................ Eqn 5   

 
In conclusion, the derived expressions provides an alternative approach to investigate frequency 
variations as a function of  θ  or φ in trigonometric terms and offers new avenues in studying 
relativistic dynamics. 
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