RELATIVISTIC FREQUENCY IN TRIGONOMETRIC TERMS.

S. Kanagaraj Euclidean Relativity s.kana.raj@gmail.com (24 October 2009)

<u>Abstract</u>

The frequency variation equation is derived in relation to 4-Euclidean metric diagram. The relativistic equations are expressed in terms of a real angular rotation ϕ (or alternatively θ) in trigonometric form. The very small relativistic effect for sound waves due to time dilation is also shown.

1.0 Introduction.

Based on a Euclidean interpretation of special relativity (SR), the Euclidean space-time (EST) diagram was formulated[1] and subsequently transformed into a Euclidean space (ES) analogue of a moving body[2]. The relativistic space, time, momentum and energy variation equations were derived expressed in trigonometric form as a function of the spacetime angle θ (or alternatively the orientation ϕ). We next express the relativistic frequency as a function of θ (or ϕ) in trigonometric form.

2.0 Effects contributing to frequency variation.

When a wavesource with rest frequency v_o is receding at velocity v, the effect of its position changes causes the wavelength λ received to be larger than when at rest λ_o . The time interval between wavefronts, period T, is larger than T_o when at rest. For this case, $\lambda > \lambda_o$; $T > T_o$ and since $v = \frac{1}{T}$, $v < v_o$. For approaching case $\lambda < \lambda_o$; $T < T_o$ and $v > v_o$. The wavelength change,

 $\Delta \lambda$, with λ_o ratio due to this effect is $\frac{\Delta \lambda}{\lambda_o} = \frac{v}{c_p}$ with c_p , the wave propagation velocity. Re-

arranging, $\frac{\lambda}{\lambda_o} = l \pm \frac{v}{c_p}$, with (+) and (-) signs for receding and approaching motion

respectively. Noting $v \lambda = c_p$ and assuming constant propagation velocity, $\frac{\lambda}{\lambda_o} = \frac{v_o}{v} = \frac{T}{T_o}$.

From EST diagram, $cos \theta = \frac{v}{c}$, where *c* is the invariant velocity in spacetime. If light propagation velocity is c_{light} then $c_p = c_{light} = c$ and

¹ This relationship for a wave source moving along a straight path from a stationary observer is derived with ease from first principles.

$$\frac{v_o}{v} = l + \cos \theta \quad \dots \quad Eqn \ l$$

When receding, v ranges from θ to c and the corresponding θ range is $\pi/2 \ge \theta \ge \theta$. When approaching, v ranges from θ to -c and θ range is $\pi/2 \le \theta \le \pi$. The $\cos \theta$ sign change is consistent with the velocity sign change for different directions.

Also due to time dilation (*TD*), a moving wavesource frequency v is less than when at rest v_o . The change in the periods ratio $\frac{T}{T_o} \left(= \frac{v_o}{v} \right)$ due to this effect is the *TD* ratio, thus

$$\frac{v_o}{v} = \frac{T}{T_o} = TD = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Substituting $\cos \theta = \frac{v}{c}$, $\frac{v_o}{v} = \csc \theta$ Eqn 2

For receding and approaching motion, θ ranges from $\pi/2 \ge \theta \ge 0$ and $\pi/2 \le \theta \le \pi$ respectively with *cosec* θ sign consistent with time variation as independent of these directions.

3.0 Deriving the frequency variation equation.

The resultant frequency variation is the product of the two effects in *Eqn 1* and 2. For the case of a moving lightwave source,

$$\frac{V_o}{V} = (1 + \cos \theta) \csc \theta$$
$$= \csc \theta + \cot \theta \quad \dots \quad Eqn \ 3$$

From *Eqn 3*,

$$\frac{v_o}{v} = \frac{1 + \cos\theta}{\sin\theta} = \sqrt{\frac{1 + \cos\theta}{1 - \cos\theta}}$$

Since $\cos \theta = \frac{v}{c}$, $\frac{v_o}{v} = \sqrt{\frac{l + \frac{v}{c}}{l - \frac{v}{c}}}$ for receding motion with the signs reversed for approaching

motion, consistent with the relativistic Doppler frequency shift for light. For a soundwave source,

$$\frac{v_o}{v} = \left(1 \pm \frac{v}{c_{sound}}\right) cosec \theta \qquad \dots Eqn \ 4$$

where c_{sound} is the soundwave propagation velocity. As *c* is the invariant velocity in spacetime, the effect due to time dilation remains as *cosec* θ . Eqn 4 which accounts for time dilation is consistent with the sound Doppler effect [3]. Since $cosec \theta = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = TD$ and for this case

 $v \ll c$, $cosec \theta$ is very close to l. The time dilation correction factor is negligible [4] and reduces to classical Doppler shift equation.

Since $\cos \theta = \frac{v}{c} = \sin \phi$, substituting into Eqn 3, the equation is expressed alternatively as a function of the orientation angle ϕ with the sign change again consistent with relativistic requirements,

$$\frac{v_o}{v} = \sec \phi + \tan \phi \quad \dots \quad Eqn \ 5$$

In conclusion, the derived expressions provides an alternative approach to investigate frequency variations as a function of θ or ϕ in trigonometric terms and offers new avenues in studying relativistic dynamics.

REFERENCES

- 1. Kanagaraj, S : *Euclidean alternative to Minkowski spacetime diagram.*, http://www.euclideanrelativity.net , 12 Aug 2009.
- 2. Kanagaraj, S : *Euclidean space analogue of a moving body.*, http://www.euclideanrelativity.net, 2 Sept 2009
- 3. Reynolds, Robert : *Doppler effect for sound via classical and relativistic space-time diagrams*, Am.J.Phys., 58(4), 390-394, 1990.
- 4. Bachman, R A: Relativistic acoustic Doppler effect, Am.J.Phys., 50, 816-818, 1982.

----- END -----© Kanagaraj