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Abstract

A modification is proposed in the Minkowski spacetime metric, whose associated
geometry defines 4-dimensional spacetime in Einstein’s special theory of relativity. The
invariant spacetime interval quantity s=ct replaces the locally measured time quantity ct in
the Minkowski spacetime 4-vector, which also includes the three spatial dimensions x, y and
z. Similarly, the associated invariant-mass-related quantity mc replaces the locally
measured total-energy-related quantity E/c in the Minkowski momenergy 4-vector. The
former Minkowski metric coordinates ct and E/c become simple hypotenuse lengths in this
new approach. These modifications significantly simplify the geometry of the Minkowski
spacetime and momenergy diagrams used with special relativity without changing the
special relativity equations themselves. Use of the Modified Minkowski metric could
therefore greatly simplify the teaching and understanding of special relativity and
invariance, which now heavily rely on Minkowski spacetime and momenergy diagrams.

Key words: Minkowski diagram, spacetime interval, momenergy, relativity, worldline,
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Introduction

According to Einstein’s! special theory of relativity, lengths and time durations
measured for the same occurrence such as a passing rocket ship or a passing sub-
atomic particle may be found to be different for different observers moving with a
constant velocity relative to each other. The speed of light measured by all
observers, independent of their state of motion, is the constant value of
approximately ¢ = 3.00 x 10°*m/s. Minkowski? in his lecture “Space and Time”
proposed a 4-dimensional geometrical spacetime metric that fits Einstein’s special
relativity equations for the invariance relationships found from measurements of
distances and times in different inertially-moving coordinate systems. In the
Minkowski metric, spacetime is geometrically flat and objects move in straight lines
when not acted on by outside forces. The Minkowski spacetime and momenergy
metric approach has been widely used in teaching special relativity, and has also
stimulated discussion about the nature of space and time.

Although Minkowski’s spacetime metric was developed for use with special
relativity, the metric is also used in Einstein’s3 general theory of relativity, which
describes gravity as curved spacetime. The curved spacetime metric obtained from
Einstein’s general relativity field equations can be described on small-enough scales
as following the Minkowski metric.



The Minkowski Spacetime Metric and the Event

An event E = (ct, x, y, z) is a mathematical point representing a set of coordinates in
space and time. The measured time t is multiplied by c to give units of length to all
four coordinates. The corresponding Minkowski spacetime metric or 4-vector is
X =(ct,x,y,z). The Minkowski metric X contains the same values as the event E. The
Minkowski metric is used for calculating time changes cAt (measured in distance
units), position changes Ax and invariant spacetime intervals As. These quantities
are pictured on Minkowski spacetime diagrams. Since a 4-dimensional diagram
cannot be drawn accurately in two dimensions, Minkowski spacetime diagrams are
usually drawn (without loss of generality) showing one or two dimensions for
positions such as x and y, and one dimension for time ¢, depicted as ct to give this
dimension the same length units as x, y and z for the positions of an event in space
and time. Figure 1 shows a Minkowski 4-vector X =(ct,,x,,y,,z,)=(5m,6m,0,0),

where the z-axis is not shown.

ct
! * X=(5m,6m,0,0)

ct=5m

y x=6m X

Figure 1. A Minkowski 4-vector in spacetime where X=(5m,6m,0,0) as measured from one inertial
reference frame. The z-axis is not shown.

The Minkowski Invariant Spacetime Interval As and the Spacetime Diagram

Minkowski? showed that Einstein’s space and time transformations can be
represented geometrically in a spacetime world. In this mathematical world,
invariant spacetime intervals As are found using the Minkowski metric X=(ct,x,y,2)
when the space and time coordinates of two events E, and E, are measured by an
observer in an inertially moving coordinate system. Observers measuring two
events in different inertially moving coordinate systems, will calculate the same
spacetime interval As between the two events, even though the event coordinates
are themselves are quantitatively different as measured from different inertial
coordinate systems. This is why As is called an invariant quantity.

The Minkowski metric labels a spacetime event as E = (ct,x,y,z) where ¢, x, y, and z

are the measured values for the event in an inertial coordinate system moving with
a particular constant velocity. For two such events E, =(ct,,x,,y,,z,) and

E, =(ct,,x,,y,,2,), the corresponding Minkowski 4-vectors are X, =(ct,,x,,y,,2,)
and X, =(ct,,x,,y,,2,). The spacetime interval As defined by
(As)’ =(cAT)’ = (X, — X,)* = (cAt)’ — (Ax)’ — (Ay)’ —(Az)’ is found according to
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special relativity to be invariant for the same two events as measured from any
inertially moving coordinate system. The quantity At is called the “proper time”
corresponding the spacetime interval As. To illustrate these mathematical
relationships, Minkowski produced spacetime diagrams corresponding to his
metric. These diagrams show graphically and geometrically the relativistic ct, x, y
and z relationships and the invariant spacetime interval As. These diagrams are
called Minkowski diagrams.

Unfortunately the invariant spacetime interval As is not the actual hypotenuse in a
Minkowski spacetime diagram. This is because the ct and x (and y and z) axes are
orthogonal in Minkowski spacetime diagrams. In Figure 2 for example, the event E,
equals (0,0,0,0) and the event E, equals (5m,4m,0,0) . So the Minkowski 4-vectors
are X, =(0,0,0,0) and X, =(5m,4m,0,0). X, — X, =(cAt,Ax,Ay,Az)=(5m,4m,0,0).
S0 As = /(A1) — (Ax)> — (Ay)* —(Az)> =V/5° —4> —0%—0* = 3m. Here As is not

V5% +4? =/41 = 6.4m which is the length of the hypotenuse in Figure 2.

Following Taylor and Wheeler4, the invariant interval 4s = 3m is shown along the

diagonal of the right triangle formed by the differences cAt and Ax (in a 2-
dimensional Minkowski spacetime diagram where Ay=Az=0). See Figure 2.

ct

cAt=5m As = cAT = 3 m # hypotenuse length 6.4 m

E, Ax=4m E, b '¢

Figure 2. The invariant interval As (in red) between two events E, and E, is shown in a Minkowski

spacetime diagram, following Taylor and Wheeler“. The length of As =+/(cAt)" —(Ax)’ is not equal to
the triangle’s hypotenuse.

The Modified Minkowski Metric and Spacetime Diagram

In this article I propose a Modified Minkowski metric with associated Modified
Minkowski spacetime diagrams having geometrical simplicity lacking in standard
Minkowski spacetime diagrams. An event E = (ct,x,y,z) is defined the same as before.
The Modified Minkowski spacetime metric replaces the first coordinate ct in the
Minkowski metric X =(ct,x,y,z) by the spacetime interval coordinate s=ct, forming

the Modified Minkowski metric X =(c7,x,y,z). Einstein’s invariant interval equation
(As)” = (cAT) = (cAt)” — (Ax)’ = (Ay)’ = (Az)* is then generated from the Modified



Minkowski metric X using the regular Pythagorean hypotenuse length formula for
four dimensions: (X, — X,)* = (cAT)* +(Ax)’ + (Ay)’ + (Az)” = (cAt)’, which is
equivalent to Einstein’s invariant spacetime interval equation above. The Modified
Minkowski spacetime metric gives a Modified Minkowski spacetime diagram whose
vertical axis s = ¢t is orthogonal to the x, y and z-axes. (Modified Minkowski
diagrams in this article show only the ct axis and the x-axis or the x and y-axes.) In
Modified Minkowski spacetime diagrams the intervals cAr, cAt, Ax, Ay and Az are
related geometrically by a right triangle whose hypotenuse is cAt, whose vertical
side is cAt and whose horizontal side is Ax (standing without loss of generality for
the three spatial dimensions x, y and z, which cannot all be accurately shown
together along with the ct-axis on a 2-dimensional diagram.)

Figure 3 shows a Modified Minkowski spacetime diagram showing the same
invariant interval 4s = cAt = 3m as in Figure 2, and where cAt = 5m and 4x = 4m as in
Figure 2. The events are indicated at the x values where they occur, such as E, and
E, in Figure 3.

s=ct

cAr=5m
As=cAT=3m
El Ax=4m E2 X
Figure 3. A Modified Minkowski spacetime diagram shows same invariant spacetime interval As (in
red) as in Figure 2. Now the value of As = (cAr)’ —(Ax)’ is equal to the length of the right triangle’s
vertical side. The events E, = (0,0,0,0) and E, = (5m,4m,0,0) on which the calculations are based
are indicated in the diagram.

The Minkowski Momenergy 4-Vector and Diagram for a Single Object with
Mass

The invariant mass m of a relativistically moving object (or set of objects
considered as a single system) is given in the experimentally well-established
relativistic energy-momentum equation E* = p°c’ + m’°c*, where the object or
system’s total energy E and total linear momentum p are measured in any inertial
frame, and the mass m is an invariant quantity, i.e. it is independent of the inertial
system from which E and p were measured for the object or set of objects. An
inertial frame is a reference frame that is moving with a constant velocity relative to
the reference frame where the object or system of objects has zero total momentum.
The standard Minskowski momentum 4-vector P =(E/c,p,,p,,p.) yields the above

energy-momentum equation E* = p’c> +m’c* . But, similar to the Minkowski

spacetime calculation for 4s, the squares of the last three momentum components
are subtracted from the square of the first momentum component E/c. This gives



P’=(E/c)y—p’—p°—p.=(E/c) —p*=(mc) which is the relativistic energy-
x y Z

momentum equation.

In 2-dimensional Minkowski momenergy diagrams, the object’s total energy E is
plotted as the momentum E/c on the vertical axis. The momentum component p_

(standing without loss of generality for the momentum coordinates p,,p, and p_) is

plotted on the horizontal axis. The invariant momentum quantity mc is indicated,
following Taylor and Wheeler#, by a short length (in red) along the hypotenuse of
the resulting right triangle. In Figure 4 below, the Minkowski momentum 4-vector
P=(5MeV/c, 4 MeV/c, 0, 0) is diagramed. The length of the hypotenuse is

V5% +4% =41 =62 MeV/c, while the invariant momentum mc is 3 MeV/c.

E/c

E/c=5MeV/c mc=3MeV/c # hypotenuse length 6.2 MeV/c

p.=4 MeV/c D,

Figure 4. A Minkowski 4-momentum diagram shows the invariant momentum mc (in red) for
Minkowski 4-vector P = (5 MeV/c, 4 MeV/c, 0,0). The value of this invariant momentum

me = 4 /(E /e) = px2 is less than the corresponding triangle’s hypotenuse, following Taylor and
Wheeler#. The invariant mass m is found from this invariant momentum mec.

The Modified Minkowski Momentum 4-Vector and Diagram for a Single Object
with Mass

For the Modified Minkowski 4-momentum metric the invariant momentum mc
replaces the momentum E/c of the Minkowski metric, giving P = (mc,p,,p,,p.)

rather than P=(E/c,p,,p,,p.). The amplitude of the Modified Minkowski 4-vector
Pis then calculated as P* = (mc)’* + p.* + p,> + p.* = (mc)’ + p* = (E/ )’ using the

standard 4-d Pythagorean hypotenuse length formula. So in this way the Modified
Minkowski momentum 4-vector generates the correct relativistic energy-

momentum equation E* = p’c’+m’c*, as does the Minkowski momentum 4-vector.

Figure 5 shows a Modified Minkowski momenergy diagram with the same invariant
momentum mc = 3 MeV/c as in Figure 4, but now as the vertical side of the triangle.



The length of the hypotenuse corresponds to the momentum quantity E/c =5 MeV/c
of the particle, and p, = 4 MeV/c , while mc=+/5>—4* =3 MeV/c as before.

mc

E/c=5MeV/c
mc=3MeV/c

>
P.=4MeV/c D,

Figure 5. The same invariant momentum mc shown (in red) on a modified Minkowski 4-momentum

diagram. The value of the invariant quantity mc = \/(E /ey — px2 is equal to the right triangle’s
vertical side length.

Figure 6(a) shows a Minkowski momenergy diagram for a single particle having

invariant momentum mc = 3.0 MeV/c (and invariant mass m = 3.0 MeV/c’), as
measured from two different inertial frames moving in the x-direction. In one
inertial frame, E/c equals 5.0 MeV/c and the momentum component p_equals 4.0

MeV/c. In a second inertial frame moving with a constant velocity relative to the
first, the particle’s E/c equals 6.0 MeV/c and its p_ equals 5.2 MeV/c. Figure 6(b)

shows a Modified Minkowki momenergy diagram with the same information.
(Assume that p = p. =0 in both inertial systems.) The reader can decide which

diagram showing the particle’s invariant momentum mc=3.0 MeV/c is simpler.

mc=3.0 § E/c=5.0 E/c=6.0

40 52 p,
(b)

Figure 6(a): Minkowski diagram shows a particle having invariant momentum mc (and invariant
mass m) but with two different energy quantities E/c and two different momentum components p_

as measured from two different inertial frames. Figure 6(b): Modified Minkowski diagram shows the
same particle information measured from the same two different inertial frames as in Figure 6(a).
Which diagram is simpler?



The Modified Minkowski spacetime diagram for a photon

Figure 7 below shows the representation of a photon in the Minkowski and
Modified Minkowski spacetime diagrams. The Minkowski diagram on the left, Figure
7(a), shows the Minkowski 4-d spacetime vector X=(cAt, Ax, 0,0) for a photon, here
seen moving in the +x direction. The photon has cAr equal to Ax so it forms a 45-
degree angle in the ct-x plane. The Modified Minkowski diagram on the right, Figure
7(b), shows the same photon with Modified Minkowski 4-vector X=(0,Ax=cAt,0,0). In
this Modified Minkowski diagram, the photon’s spacetime interval cAt is zero on the
vertical ct axis but the photon’s displacement Ax equals cAt on the horizontal x axis.

ct cT

cAt |© photon
¢ At=Ax

cAt=0 cAt photon

1 cAt=0 | l
cAt Ax X cAt Ax X
(a) (b)

Figure 7. Comparison of (a) the Minkowski spacetime diagram and (b) the Modified Minkowski
spacetime diagram for a single photon. The spacetime interval c 4t for a photon is always zero, as
indicated by the red spot on the green hypotenuse line in Figure 7(a) and the 0 value of cAt on the ct
axis in Figure 7(b).

The Modified Minkowski momenergy diagram for a photon

Figure 8 below shows the representations of a photon in Minkowski and Modified
Minkowski momenergy diagrams. The left diagram shows the Minkowski
momentum 4- vector P=(E/c, p,,0,0) for a photon, here seen moving in the +x

direction. The photon has E/c equal to its momentum component p_ (assuming
p,=p.=0) and so forms a 45-degree angle in the E/c - p, plane. The right diagram

shows the Modified Minkowski momentum 4-vector P=(0, p, = E/c,0,0). Its

invariant momentum mc is zero as shown on the vertical mc axis. This is why the
mass of a photon is said to be zero. But the photon’s momentum component is
p, =E/c onthe horizontal p_ axis.

E/c mc
I photon
Elc=p, photon
E/c E/c=p,
mc=0 —
px px px px
(a) (b)

Figure 8. Comparison of (a) Minkowski momenergy diagram and (b) Modified Minkowski
momenergy diagram for a single photon. The invariant momenergy mc for a photon is always zero.
This is why the mass m of a photon is said to be zero.



Minkowski spacetime light cones and worldlines

Figure 9 shows the familiar Minkowski spacetime light-cone and worldline diagram
indicating the timelike (v < c) and spacelike (v > c) regions on opposite sides of two
light cones that are themselves the light-like region, allowing speed-of-light (v = c)
travel along the sides of the cones.

ct

DE, =(ct,,x,,0,0)
Fut\hre worldline

Timelikg <light-like region
reg]on

spacelike region(elsewhere)
b'¢

spacelike region (elsewhere)

timelike
region

_“

E =(ct,x,,0,0) @
Past

Figure 9. A Minkowski spacetime light cone diagram shows the different causal regions
corresponding to an event E= (0,0,0,0) at the origin. The timelike regions (inside the light cones) are
regions where there can be a causal relationship between the event at the origin and an event within
the timelike regions (where v < c.) The spacelike regions (outside the light cones) are regions where
there cannot be a causal relationship between the event at the origin and any event in the spacelike
region (because v > ¢ .) A worldline is shown for an object with mass moving at a constant speed v <
¢. Worldlines of objects with mass can move only through timelike regions. Events in light-like
regions (the two cones themselves) can also be causally connected by lightspeed photon transfer.

Figure 10 below shows the Modified Minkowski spacetime diagram for a situation
similar to that shown in the Minkowski light cone spacetime diagram above. Notice
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the absence of light cones in Figure 10. There are no light cones in Modified
Minkowski spacetime diagrams because for light, As = cAt is always zero on the
vertical axis. The worldline is shown for an object with mass moving with a constant
velocity v < c in the positive x direction. The spacetime interval cAt between the two
timelike events E, =(ct,,x,,0,0 and E, =(ct,,x,,0,0) is calculated as cAt =

J(cAt)* —(Ax)* and is always real and positive when the object’s velocity v is less

than c. In the Modified Minkowski diagram, relations between two events can be
causal as long as As=cAt is real and positive between these two events.

The spacetime interval As=cAt would be imaginary (or spacelike) if the velocity
v=Ax/At connecting two events separated by Ax and At is greater than c. Events with
spacelike separation would yield an imaginary value of As=cAt and so could not
have an associated worldline (see example in upper left quadrant in Figure 10.)

s=cT
light-like: As=cAt =0
cAt = Ax
Ax timelike: cAt > Ax E, =(ct,,x,,0,0)
CT, = I & & & - - - - - t,

spacelike: As=cAt imaginary

[
[
[
cAt < Ax I
[ 2 ] CT] I
Ax | E, =(ct,,x,,0,0) .
' |
' M
X, Ax X, X
worldline

Figure 10. A Modified Minkowski spacetime diagram is shown with ¢t and x orthogonal dimensions.
An object is shown moving with a constant velocity v=4x/At on its worldline, where v<c. The

spacetime interval As=cAt between the two events E = (ct,,x,,0,0) and E = (ct,,x,,0,0) is

calculated as cAT = \/(cAt)2 —(Ax)’ . On a Modified Minkowski spacetime diagram the worldline of a

photon is always horizontal (slope=0), but the worldline of a material object with mass m moving at
v<c will always have a slope greater than 0. This means that ct is always increasing along the
material object’s worldline. If Ax/cAt > 1 then the relation between two events is spacelike and there
could be no causal relationship between these two events. A spacelike situation is shown by two
horizontal line segments in the upper left quadrant above. The time separation cAt (length of the top
line segment) between the two events is less than the distance separation Ax (length of the bottom
line segment) between the two events. There can be no causal relation between these two events that
are indicated by the two red dots. A lightlike region corresponds a spacetime interval 4s where
Ax=cAt, and 4s = cAt = 0, also shown in the upper left quadrant of Figure 10.




Modified Minkowski Momenergy Diagrams for System of Two Particles
Moving in Opposite Directions

Figure 11 show Modified Minkowski momenergy diagrams for two particles each
with mass m =3 MeV/c* moving in opposite directions with momentum
p,=—4MeV/c and P,=+4MeV/c onthe p_ axis (with p, = p_=0 for both
particles), and each particle with individual E/c =5 MeV/c and mc =3 MeV/c. So
(E/c),,; =5+5=10 MeV/c and the total momentum p_  , =—4+4=0 MeV/c.
Figure 11(a) shows the mc, p. and E/c of the individual particles. Figure 11(b)
shows the total momentum p_, ., the total E/c and the total mc for the system of
two particles. Solving for (mc),,,,, we find that
(M)’ = (E 1) et = (P i)’ = Py )’ = (P 1)’ =107 =02 =0? —0? =100 . This

gives (mc),,, =100 =10 MeV/c and so m,,, =10 MeV/c’. For a system of two (or

more) masses moving relative to each other, their total mass is greater than the sum
of their individual masses. This result is well-known in special relativity.

total

mc mc

=10 || (E/c),,, =10

total —

(mc)

px1:_4 px2:+4 px pxtotal=0 px

(a) (b)

Figure 11. Modified Minkowski momenergy diagrams for two oppositely-moving particles. Figure
11(a) is for the two individual particles and Figure 11(b) is for the system of two particles. The total

mass m_ =10 MeV/c® of the system is greater than the sum of the masses of the individual particles

total

m+m=3+3=6MeV/c’.
What Are the Directions of Time and Energy in Spacetime?

Since the Modified Minkowski metric does not take time variable ct and energy
variable E/c as fourth perpendicular dimensions for calculating the invariant
quantities as does the Minkowski metric, can we still ask what are the directions of
ct and E/c in spacetime? Consider the Modified Minkowski momenergy diagram of

the energy-momentum equation (E/c¢)* = p.*+p >+ p’+(mc)’. E/cis the
hypotenuse of the triangle. Here p,=p. =0 and v,=v,=0,s0 p,=p and v, =v. So
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we have (E/c)* = p,> +(mc)’ for our momenergy relation in the Modified
Minkowski diagram (Figure 12).

mc

mc E/c
#

Dy Dy

Figure 12. Modified Minkowski momenergy diagram where p,=p. = 0.

E/c=ymc®/c=ymc

AN

p,=ymy D,
Figure 13. Modified Minkowski momenergy diagram of Figure 12 with hypotenuse E/c rotated. The
angle 0 is unchanged from Figure 12.

In Figure 13 the E/c hypotenuse has been rotated without changing its length E/c, and has
been expressed in terms of the object’s total energy E/c = )/mc2 / ¢ =7ymc, while the
relativistic momentum component p_ is expressedas p =ymyv_=Ymyv (since v.=v
here. The angle 6 between E/cand p, is indicated and is unchanged from Figure 12.

Now if we divide all three momentum vectors in Figure 13 by the quantity ymc, the
diagram becomes Figure 14, showing the mathematical proportions of the triangle
sides.

1/y
%
v/c s

Figure 14. Proportions of sides of Modifed Minkowski momenergy triangle.
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We can see from the Modified Minkowski proportion diagram in Figure 14 that
a) cos@=(v/c)/1=v/c
b) sin6=(1/y)/1=1/y
c) tan6=(1/y)/(v/c)=c/vy

Similarly if we divide all three lengths of the Modified Minkowski spacetime figure
in Figure 15 below (corresponding to Figure 3 above) by the quantity cAt, the

diagram becomes Figure 16, showing the mathematical proportion of the sides.

cAT

cAt cAt
L

Ax Ax

Figure 15. Modified Minkowski spacetime diagram, similar to Figure 3.

When we divide all three lengths of the Modified Minkowski spacetime diagram by cAt, we
get Figure 16.

cAT

1

At/At } 0

Ax/cAt Ax

Figure 16. Proportions of the three sides of the Modified Minkowski spacetime triangle when all
coordinates are divided by cAt.

Since Ax/At =v where v is the speed necessary to travel the distance Ax in time At,
we have Ax/cAt = v/c in the figure. Also by the Pythagorean theorem,

AT/At=+1>=(v/c) =N1-v?/¢* =1/7. So Figure 16 above becomes Figure 17
below.

cAt

1
1/y \ 0
-
v/c Ax
Figure 17. Proportions of the three sides of the Modified Minkowski Spacetime triangle.
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We can see from the Modified Minkowski spacetime diagram in Figure 17 (as with
Figure 14 for the Modified Minkowski momenergy diagram) that
a) cos@=(v/c)/1=v/c
b) sin6=(1/y)/1=1/y
d) tan6=(1/y)/(v/c)=c/vy

Notice that the proportions of the sides of the Modified Minkowski spacetime
triangle (Figure 17) and the proportions of the sides of the Modified Minkowski
momenergy triangle (Figure 14) are the same. So if the quantity cAt (the
hypotenuse in Figure 15) is known in a problem, the invariant spacetime interval
cAt is found from the proportions in Figure 17 to be cAt=cAt sin@ =cAt X 1/y =
cAt/y.

Using the Modified Minkowski Spacetime Diagram with the “Twin Paradox”.

Special relativity predicts that a twin that goes on a space voyage at near light
speed v to another star and returns to Earth will not have aged as much as the twin
that remained on Earth the whole time. (The full explanation of this effect takes into
account the accelerations experienced by the travelling twin than are not
experienced by the twin that stayed at home.)

Problem: Twin Stella takes a rocket ship travelling at v=0.990c to a star 4.00 light-
years away from Earth, then turns around and returns to Earth. Twin Sally stays
behind. How many years will Sally and Stella have aged when Stella returns?

Solution: A one-way trip takes At, = one-way distance/velocity = 4.00 light-

years/0.990c = 4.04 years as measured by Sally on Earth. The round trip takes
twice that: Ar,,, =2At, =2x4.04 =8.08 years as measured by Sally. This is how

much Sally will have aged during Stella’s round trip to the star.

total

Figure 18 shows the Modified Minkowski spacetime diagrams for Stella’s round trip
to the star. In Figure 18(a) the hypotenuse cAz, for the one-way trip is

cAt, = ¢ x4.04 years = 4.04 light-years. For v =0.990c the value of y is

1/N1=v*/¢® =1/41= 990> =7.089 and the value of @iscos™ (v/¢) = cos ™ (.990) =

8.11 degrees. Using the angle 8 (where cosf = v/c) and the Modified Minkowski
spacetime geometry of Figure 18(a), we see from the triangle in the diagram (where
Ax is the distance from Earth to the star) that Stella’s increase in age At during her
round trip (as measured by Sally) is obtained from the geometric relation for the
triangle in Figure 18(a): cAt=2A4xtanf = 2 (4 c years)(1/y)/(v/c)=(8/7.089)/.990 =
1.14 c years . So the increase in Stella’s age on returning to Earthis At =1.14 ¢
years/c = 1.14 years. Figure 18(b) shows that Sally has aged 8.08 years, since for
her, (cAt)’ = (cAT)’ +(Ax)” = (cAT)* +(0)’ = (cAt)’. Therefore At=At for Sally
because Sally’s own displacement Ax during Stella’s round trip to the star was zero.

13



cT cT
Sally’s
invariant |Sally’s measured
cAt= total cAt=
Stella’s Stella’s travel time difference 8.08 cyrs.] 8.08cyrs.
invariant cAt, (each way)=4.04 c years (measured
cAt= (measured from EARTH) from EARTH)
1.14cyr. 0%
EARTH Ax=4.00 STAR X EARTH Ax=0 X
Ax=vAt=4 light years (as measured from
=4c years (measured from EARTH) EARTH)
(a) (b)

Figure 18. Solving the “twin paradox” problem using the Modified Minkowski spacetime diagram. (a)
Stella makes a round trip to a star 4 light-years away while travelling each way at v = 0.990c¢, with
cosf=v/c=0.990, so 6=8.11 degrees. Stella’s one-way distance is 4 light years and her one-way
travel time is 4.04 years as measured from Earth. Stella has aged the amount of her invariant time of
At=1.14 years during her round trip. (b) Sally’s age has increased by 8.08 years during Stella’s round
trip. Sally’s invariant time equals her measured time for Stella’s round trip because Sally’s Ax=0
because she remained on Earth during Stella’s round trip to the star.

Are Time and Energy in the Fourth Dimension?

The special theory of relativity shows that time and space are closely interrelated
although they are not interchangeable. The idea that time and space will have less
meaning separately and more meaning when considered as aspects of a unified
spacetime owes much to Minkowski and Minkowski diagrams of spacetime
relationships. Einstein relied on Minkowski’s mathematical approach to spacetime
when developing his own general theory of relativity. This theory, which has much
experimental and astronomical support, relates gravity to a warping of spacetime
produced by concentrations of energy and momentum, and incorporates the
Minkowski metric as well as more complex metrics.

In the Minkowski metric, E/c (having the units of of momentum) is orthogonal to
the other three components p,, p, and p, (or the three-vector p). These four

orthogonal momentum components combine by a kind of negative Pythagorean
theorem to produce the invariant quantity mc.

In the Modified Minkowski momenergy metric, the 4-vector component mc is
orthogonal to p_, p, and p, (or p), while the quantity E/c now has the magnitude of

the vector sum of the orthogonal components mc, p,, p, and p, by means of the

actual Pythagorean theorem (applied in four dimensions). In the Modified
Minkowski metric, the hypotenuse E/c makes an angle 6 with the vector p given by
cosf =v/c, so 8 can be anywhere from 0 degrees to 90 degrees. In the Modified
Minkowski metric the angle 6 between E/c and p is only 90 degrees when p=0.

14



Similarly, in the Minkowski spacetime metric, the cAt component is orthogonal to
the Ax, Ay and Az components, producing the invariant interval As=cAt by the
negative Pythagorean theorem. But in the Modified Minkowski spacetime metric,
As=cAt is one of the orthogonal components of the difference vector X, — X, (along

with Ax, Ay and Az) while cAt is the actual Pythagorean hypotenuse (applied in four
dimensions). As seen in Figure 15 above, cAt makes an angle 8 with Ax (when
Ay=Az=0) where cos6 = v/c. So the angle 8 between cAt and Ax (or the 3-d
displacement vector r) in the Modified Minkowski metric can be anywhere between
0 degrees and 90 degrees, and is only 90 degrees when Ax (or r) is zero.

The Modified Minkowski metric contains the invariant spacetime interval cAt and
the invariant momentum mc as 4t dimensional quantities, displacing the variable
quantities ct and E/c from their 4t dimensional status in the Minkowski metric.
Whether this modification of the Minkowski metric will lead to a reconsideration of
the nature of time (and energy) as 4th dimensional quantities remains to be seen.

The Origin of the Modified Minkowski Metric

The reader may wonder about the origin of the Modified Minkowski metric. [ am
proposing this metric based on the momentum relationships in the Gauthier> model
of a relativistic electron that is composed of a circulating spin-1/2 charged photon.

Briefly, a circling charged photon-like object proposed to compose an electron of
rest energy E, =mc’ has circling momentum P =E,/c=mc.If this electron model

moves relativistically with velocity v in a direction perpendicular to the plane of the
charged photon’s circular motion, the charged photon’s energy (since it is the

electron’s relativistic energy) becomes E =ymc® and its momentum becomes

P =E/c=ymc.The circling charged photon composing a resting electron becomes
a helically-moving charged photon that has longitudinal momentum components p_,
p, and p_ and a transverse momentum component p,., ... = mc. The forward angle
6 of the charged photon’s helical trajectory is given by cos 8 = v/c. The transverse
and longitudinal momentum components of the helically moving charged photon-
like lead to the Pythagorean equation p,,...c..” + Piongindina. = Prorat’ » OF

(me)’ +p’+p’+p°=(E/c),or (me)’ +p*>=(E/c)’. Thisresultis both the
relativistic energy-momentum equation, and the Pythagorean sum of squares of the
components of a 4-vector (mc,p,,p,,p.) equaling (E/c)*. This was the origin of the

Modified Minkowski 4-momentum metric relationship. The above momentum
relationships are illustrated on the Modified Minkowski momenergy diagram in
Figure 19 below.
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mc E/c=ymc®*/c=ymc

\6

p=rymy p

Figure 19. Modified Minkowski momenergy 4-vector (mc,px,py,pz) whose components add

according to the Pythagorean theorem to give the total diagonal momentum vector E/c. 8 (where
cosf =v/c) is the angle between the E/c momentum vector and the p momentum vector.

When Figure 19 is compared with Figure 20 below, which is from Gauthier?®, the
reader can immediately see why the Modified Minkowski 4-momentum metric
(me,p,,p,,p.) suggested itself to the author. The Modified Minkowski spacetime

metric (c7,x,y,z) was developed soon after the Modified Minkowski momenergy

metric.
transverse momentum ol photon % }’mC
momentum of
mc mc charged photon
v
velocity of electron @ momentum of electron
0 - >
radius 'ymV¥
of velocity of 2
plho[t.on charged photon electron — ¥ TC
1elix

h/2mcy’ ¢ E o= ymc® = hv

Figure 20. (From Gauthier’) Velocity, momentum and energy relationships for a relativistic electron
modeled by a proposed helically-circulating spin-1/2 charged photon. The velocity and momentum
vectors and vector components of the charged photon are indicated.

The proposed model of the electron as a circulating spin-1/2 charged photon gives
a physical meaning to the momentum quantities mc and E /¢ =7y mc in Minkowski

and Modified Minkowski momenergy diagrams for an electron. As seen in Figure 20
above, mc is the momentum of the circling spin-1/2 charged photon proposed to
compose a resting electron. E/c=ymc is the total momentum of the helically-

circulating spin-1/2 charged photon composing the moving electron model, having
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mc as its transverse component of momentum and p =ymv as its longitudinal

component of momentum. Similarly, the distances cAt and cAt in the Minkowski
and Modified Minkowski spacetime diagrams have physical meanings in the
proposed electron model. cAt is the distance traveled during the proper time At by
the circling charged spin-1/2 charged photon. The distance cAt is the distance the
helically moving spin-1/2 charged photon travels along its helical trajectory during
the time At measured between two events associated with the moving electron.
The Modified Minkowski metric is however independent of any particular
microscopic model of matter. The Modified Minkowski metric, like the Minkowski
metric, stands on the correctness of the experimentally well-established relativistic
invariance relations for spacetime and mass-energy.

Further Discussion

The proposed Modified Minkowski metric for spacetime and for momenergy is a
new way to geometrically represent the mathematical relations among space, time,
energy and momentum in Einstein’s special theory of relativity. It proposes a small
but significant modification in the Minkowski 4-vectors for spacetime and for
momenergy. The Minkowski metric has been used since 1908 to diagram spacetime
and momenergy relations to help illustrate invariance relations in special relativity
and to solve special relativity problems. Although the Minkowski metric has been
very successful and is still highly utilized, this geometrical method is somewhat
awkward. In reference to Minkowski’s mathematical approach to relativity,
Einstein® is quoted as saying, “Since the mathematicians have invaded the theory of
relativity [ do not understand it myself any more.” The Minkowski metric requires
hyperbolic mathematics, rather than basic trigonometry and Pythagorean geometry
used with the Modified Minkowski metric, to graphically display relativistic
relations and the mathematical invariant spacetime and momenergy relations of
special relativity.

The Minkowski spacetime and momenergy metrics set the time ¢ (multiplied by c)
and the total energy E (divided by c) respectively as the 4th dimension components
in the two metrics, along with the three dimensions of space (x,,z) and the
corresponding three spatial dimensions of momentum (p,,p,,p.). The Modified

Minkowski metric replaces ct by the invariant spacetime interval ct in the 4-
dimensional spacetime metric and replaces E/c by the invariant momentum mc in
the 4-dimensional momenergy metric. The result is that the squares of the time
term ct and the energy term E/c in the Modified Minkowski metrics become equal to
the simple Pythagorean sum of squares of the 4 components of the Modified
Minkowski metrics for spacetime and momenergy respectively. The mathematical
invariance relations of special relativity are not altered by this modification of the
Minkowski metric. But the spacetime and momenergy diagrams are simplified.

Minkowski’s spacetime metric has found great utility in Einstein’s general theory
of relativity, where gravity is interpreted as curved spacetime. There may be
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implications of the Modified Minkowski metric for general relativity, since the
Minkowski metric applies in general relativity in regions of curved spacetime that
are sufficiently localized so that spacetime is locally flat. In curved spacetime the
invariant special relativity differential invariant interval ds is found from the
formula (ds)’* = (cdt)’ —dx* —dy”* —dz’ . This mathematical relationship is used both

by Minkowski diagrams and by Modified Minkowski diagrams. It will be interesting
to see in general relativity if the Modified Minkowski spacetime metric can add
greater simplicity than the Minkowski spacetime metric, in the way that the
Modified Minkowski metric simplifies special relativity’s spacetime and momenergy
diagrams.

Are there any logical reasons why the traditional Minkowski metric, which takes
time t (or more precisely the distance ct) and total energy E (or more precisely the
momentum E/c) as 4t dimensional quantities, should be preferred to the proposed
Modified Minkowski metric, which sets the invariant spacetime interval cAt and the
corresponding invariant momentum mc as 4th dimensional quantities? Both metrics
conform to the equations of special relativity and are useful in solving problems in
special relativity. Minkowski spacetime and momenergy diagrams are more
complicated than Modified Minkowski diagrams because Minkowski diagrams
geometrically represent special relativity’s invariant spacetime and energy-
momentum relations by the use of hyperbolic or negative Pythagorean
relationships. Modified Minkowski spacetime and momenergy diagrams have a
greater simplicity gained by geometrically representing special relativity’s invariant
spacetime and energy-momentum relationships by using the actual Pythagorean
theorem. This article has introduced the Modified Minkowski metric with several
illustrative comparisons of Minkowski and Modified Minkowski diagrams. Readers
familiar with using traditional Minkowski diagrams for solving special relativity
problems could generate other examples comparing the two approaches.

Conclusions

The proposed Modified Minkowski metric provides an alternative way to make
geometrically-based spacetime and momenergy diagrams to better understand
special relativity and to help solve special relativity problems, without modifying
the invariance relations found experimentally and described mathematically by
special relativity. Any techniques that facilitate the teaching of relativity without
compromising the equations of relativity should be welcomed by physics teachers. If
there are further benefits from using the Modified Minkowski metric such as a
possibly deeper understanding of the nature of space and time, these benefits
should be welcomed as well.
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