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                                                           ABSTRACT 
By transforming the velocity of a frame analogous as moving in 4-euclidean space, dynamics is studied in 
close correspondence with classical physics in the euclidean space diagram. Subsequently the velocity 
addition formula is deduced as the arithmetical addition of proper velocities V.  In the standard 
formulation it is the rapidities α from rapidity space which are arithmetically added.  As a result, the 
velocity transformation graph of the formula slightly deviates from the standard one. An analysis reveals 
the characteristics of both the euclidean space and rapidity space graphs are identical. The formula fulfills 
the conditions to satisfy relativistic requirements in similarity with the standard one. The interpretation 
problems in concluding the velocity addition as a tested formula is reviewed.  
 
 
1.  The standard velocity addition formula reviewed.  
 
 In studying 3 collinear inertial frames 1, 2 and 3, observers in frame 1 and 2 observe frame 2 
and 3 moving at velocity υ1 and υ2 along the same path respectively. From Lorentz 
transformation equations, the space-time coordinates for observations from frame 2 is 
transformed in terms of reference frame 1. Subsequently, the velocity υ3 of frame 3 relative to 1, 
the velocity addition formula is derived (where 1 unit of velocity = c) as 
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   …….. Eqn 1 

 
In the space-time diagram, the relationship between velocity υ and the complex rotation Φ is   
tan Φ = iυ (where i = 1− ). Thus tan Φ1  = iυ1 ; tan Φ2 = iυ2 and tan Φ3 = iυ3 with the angular 
relationship as tan Φ3 = tan (Φ1 + Φ2). Expanding and substituting the terms gives the same 
standard formula.  
 
 

Comparing Eqn 1 with the hyperbolic identity,  )( 21 αα + tanh  = 
21

21
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+  and by 

defining  υ = tanh α, the velocity υ is transformed to rapidity α which is analogous to a speed in 
rapidity space. For the range, 0 ≤ υ ≤ 1, the rapidity range is 0 ≤ α ≤ ∞.  The rapidity α3 of  frame 
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3 relative to 1 is the sum of the rapidity α1 of frame 2 relative to 1 and the rapidity α2 of frame 3 
relative to 2. Therefore, α3 = (α1 + α2) and for many collinear frames, the rapidity of the last 
frame is the sum of the rapidities.  
 
The standard velocity addition formula is consistent with the conditions to satisfy relativistic 
requirements.  Its predictions have been well applied in investigating relativistic observations 
giving results consistent with the mathematical analysis. The Fizeau’s experiment, within error 
limits, is interpreted as providing the empirical support of the formula and represents the direct 
test for it. The experiment as a conclusive test of the formula has been subjected to critical 
reviews based on the validity of the underlying assumptions in its interpretation. A case for 
consideration [1] is the validity of neglecting the Doppler effect of light interacting with moving 
media in the analysis of the observed interference fringe effect. On the argument [2] that the 
experiment provides corroboration of the phase speed of light wave but not for light particle 
(photons), a non-interferometric Fizeau-type experiment capable of measuring photons in 
moving media has been presented that may serve as a crucial test of the velocity addition 
formula. 
 
       
2.  The velocity addition formula from Euclidean space. 
 
On the assumption frames move in euclidean space, the conventional velocities υ of collinear 
frames are added arithmetically in classical physics. With the introduction of relativistic physics, 
it became evident this assumption is only valid to a good approximation for the case υ<<1. We 
infer that to validly add velocities arithmetically corresponding with classical physics for its 
whole range, the velocity υ has to be transformed as moving in a euclidean space analogue.  
 
This corresponds with the proper velocity V in the euclidean space (ES) diagram [3]. From this 
reasoning, it is deduced that the proper velocity V3 of frame 3 relative to 1 is the sum of the 
proper velocities V1 and V2 of frame 2 relative to 1 and frame 3 relative to 2 respectively.   
 
           V3 = V1 + V2   …….. Eqn 2 
 
 Since proper velocity expressed as a function of orientation angle φ  and spacetime angle θ  is   
V = tan φ  and V = cot θ  respectively, Eqn 2 re-expressed in terms of these real rotation angles is   
 
           tan φ3 = tan φ1 + tan φ2 ….. Eqn 3 
 
 or alternatively as          
 
           cot θ3 = cot θ1 + cot θ2  …..  Eqn 4  
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In euclidean space υ =sin φ (and V = υ /√(1- υ 2) = tan φ ) and in rapidity space υ = tanh α . In 
the ES diagram, the angular velocity parameters φ (and θ) represents a 4-rotation in euclidean 
space compared to the angular velocity parameter α which is analogous to speeds in rapidity 
space. This explains why the formula is not derived as the sum of φ [4]. With proper velocities V 
as additive compared to rapidities α as additive in the standard case, the derived formula is 
inconsistent with the standard formula.  
 
From  Eqn 3, φ 3 = arctan [tan φ 1 +  tan φ 2 ]. Since υ1 = sin φ1 ;  υ2 = sin φ2  and υ3 = sin φ3 , 
substituting  and re-arranging yields,  υ3 =  sin{ arctan[tan(arcsin υ1) + tan(arcsin υ2)] }. This is 
identical to the alternative formula offered [5] based purely as a mathematical exercise.1 
 
The proper velocity V = tan φ  (= cot θ ) of a frame is equal to the gradient g of its corresponding 
slope in the ES diagram.  Fig 1 shows the slopes in the circular representation 2 of the ES  
diagram.  
                              x4- axis                                                                    
                                                                                                        
                                                                        Gradient = g3 = tan φ3 = V3                         
                                                                            ( Frame 3 relative to 1)                                                    
                                                                                                                         
                                                                                      Gradient = g2 = tan φ2 = V2  
                                                                                        (Frame 3 relative to 2)         
                                                                                                         
                                                                                              Gradient = g1 = tan φ1 = V1                     
                                                        φ3                                     (Frame 2 relative to 1)               
 
                                                      φ2                
                                                 φ1                                                         x1-axis 
                                                    
 
Figure 1: The gradients of collinear frames 1, 2 & 3 slopes in the ES diagram relative to 1.   
 
The proper velocity of frame 2 relative to 1, V1, is gradient , g1 and of frame 3 relative to 2, V2 , 
is  g2  (in dotted lines since inserted into ES diagram relative to frame 1) and of frame 3 relative 
to 1, V3 , is  g3 . From Eqn 2,  
 
              g3 =  g1 +  g2    ……  Eqn 5 
                                                            
1  For comparison the standard formula is,   υ3 = tanh[arctanh(υ1) + arctanh(υ2)].   
 
2  In the ES diagram the magnitude of the proper velocity vector V given by the inclined lines length varies. Since 
our interest is only on its gradients, for convenience we use the circular representation.   
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For many collinear frames, we adopt a convention where υij and Vij  are the conventional and proper 
velocities of frame j relative to frame i. Using this convention, from Eqn 2, the proper velocity of frame 4 
relative to 1, V14 , is equal to the sum of the proper velocities of frame 3 relative to 1, V13 , and frame 4 
relative to 3, V34 .   
 
          V14 = V13 + V34    ………  Eqn 6 
 
Substituting V13 from Eqn 2 into Eqn 6,    
 
         V14 = V12 + V23 + V34 
 
In general the proper velocity of the nth  frame relative to frame 1 is   
 
          V1n = V12 + V23 + V34 + ……. + V(n-1) n 
 
Expressed in terms of φ is 
 
          tan φ 1n = tan φ 12 + tan φ 23 + tan φ 34+ ….. + tan φ (n-1) n 
 
or in terms of θ  is  
 
          cot  θ1n = cot θ12 + cot θ23 + cot θ34 + ……. + cot θ(n-1)n  
  
 or in terms of g is    
 
          g 1n = g 12 + g 23 + g 34 + … + g ( n-1) n 
 
 
3. The velocity transformation in euclidean space compared with rapidity space. 
 
By transforming the conventional velocity υ into proper velocity V through the relationship 

2υ1
υV
−

= , collinear frames are studied as moving in euclidean space compared with as 

moving in rapidity space at rapidity α through the relationship α = tanh–1 υ .  
 
  
For the υ range 0 ≤ υ ≤ 1, V range is 0 ≤ V ≤ ∞  and α range is 0 ≤ α ≤ ∞ . Expressing υ in terms 

of V and α ,  
2V1

V
+

=υ  and υ = tanh α  respectively.  Fig 2 shows the velocity transformation 

for euclidean space with rapidity space graph superimposed on it. 
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                Conventional velocity  υ                  Rapidity space graph.  
                                                                    υ = (eα – e−α) / (eα + e−α )  
                                                                    [ υ = tanhα ]  
                  1.0                                   
         υrapidity space                              
         υeuclidean space  
                                                                   Euclidean space graph  
                                                                    υ  = V / √( 1 + V 2 )  
                   0.5                                            [V = tan φ ]  
                                                                     
                                                                   
 
 
 
                            
                        0          1       2       3       4       5       6       7       8      9      10 
                                                                                                          Proper velocity  V 
                                                                                                             ( Rapidity α )   
                                                                                      
              Figure 2 : Graph of conventional velocity υ vs proper velocity V                                  
               in euclidean space compared with rapidityα in rapidity space.   
 
 
From Fig 2 , when υ<<1 , both the graphs are almost linear with υ ≈ V ≈ α and the velocity 
transformation relationship  reduces to the arithmetic sum of conventional velocities. As υ 
increases both graphs bends towards the horizontal υ =1 line. As υ approaches 1 (υ →1), V → ∞, 
α → ∞. This translates as the transformation relationship of the sum of all proper velocities or 
rapidities approaches a limiting value of υ = 1 for both cases. This feature ensures if υ =1 for any 
frame, the last frame’s velocity υ is also 1. Thus the characteristic of both graphs are identical 
and fulfills the conditions to satisfy the basic relativistic requirements for observations between 
collinear frames. 
 
Adopting receding velocity as positive (+ve) and approaching velocity as negative (–ve),  the 
euclidean space and rapidity space graphs in Fig 2 are both symmetrical for these two ranges.  
The velocity υ range for the approaching motion case is  –1< υ <0 and its corresponding φ  range 

is –
2
π

 <φ <0.  Since for this range of φ  values,  sin (– φ ) = – sin φ  and tan (– φ) = – tan φ thus 

with this convention only the quadrant circle is needed for both directions of motion. If in terms 
of θ, then V = cot θ and υ = cos θ with the results consistent with the above.  
 
Fig 3 shows the percentage deviation of υ values in euclidean space compared to rapidity space 
graph. For the same proper velocity and rapidity, the corresponding conventional velocity υ are 
υeuclidean space  and υrapidity space respectively.  Although V and α ranges to infinity the graph only 
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shows to 10 units because the deviation is very small for higher values.  The maximum 
percentage difference of 8.094% occurs when V and α  is 1.43.  
 
 Percentage deviation   
     in  velocity υ  
         % 
                                               Maximum difference 8.094 % 
         8.094                                 at V and α  = 1.43 
         8        
         7 
         6 

         5                                   Percentage deviation =  100%  
  

pacerapidity s

 spaceeuclideanpacerapidity s ×
−

υ
υυ

 

         4                                                               

         3          
         2           
         1               
                       
           0               1.43                                                                                                 
                         1        2        3        4        5        6        7        8        9        10  Proper velocity V  
                                                                                                                              Rapidity α       
   
Figure 3:  Graph of percentage deviation of velocity υ in euclidean space compared with  
                  rapidity space. 
 
From υ = tanh α and υ= sin φ = cos θ , applying trigonometric identities, we obtain  υ = tanh α 
= sin φ = cos θ ;  V = sinh α = tan φ = cot θ ;  cosh α = sec φ = cosec θ ;  sech α = cos φ = sin θ.  
From  these  relationships,  the  velocity  addition  formula  and  the  relativistic  space,  time, momentum, 
energy and frequency equations  can neatly be expressed interchangeably in terms of  φ , θ or α.  Similar 

to expressing α = arctanh υ in differential and integral form as  2υ1
1

υd
αd

−
=  and α  =  ∫ − 2υ1

υd ,  we can 

express (a) V = tan φ  as 
φd

dV
 =  φ2 sec   and  V =  ∫ φ2 sec  dφ  and   (b) V = cot θ  as  

θd
dV

= – cosec2 θ   

and  V =  ∫ − θcosec2  dθ .  From these, we obtain                      
υd
αd
 =  

φd
dV

  =  – 
θd

dV
  =  2υ1

1
−

  =  sec2φ   

= cosec2θ  =  cosh2α   =  1+ V 2 . 
 
In our formulation, the angles φ and θ are real, thus the identical characteristics between 
euclidean and rapidity space graphs and the neat mathematical relationships between φ , θ and α 
suggests rapidity α is not merely an abstract quantity. This corresponds with Leblond [6], “The 
argument often heard that rapidity is a useful quantity, but a highly abstract one related only to 
‘physical’ velocity through the formal expression (i.e. α = arctanh υ), should be rebutted that, on 
the contrary, rapidity has an immediate physical significance ….. ” .  
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4.  Conlusion. 
 
In investigating collinear frames, we interpreted that transforming the velocities in terms of a 
euclidean space analogue validates its arithmetical addition. As this corresponds with proper 
velocity V and not rapidity α, the deduced formula slightly deviates from the standard case. The 
formula expressed in terms of φ or θ in trigonometric form was also shown. The identical 
graphical characteristics and neat mathematical relationship between the speed parametersα , φ, 
θ, V and υ suggests an intimate link exist between rapidity space and euclidean space. Finally, it 
is imperative the interpretation problems in verifying the velocity addition formula be resolved to 
conclusively ascertain the formula that is excluded from consideration. 
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